×

zbMATH — the first resource for mathematics

Matrices and pairs of modules. (English) Zbl 0282.16001

MSC:
16U30 Divisibility, noncommutative UFDs
16D40 Free, projective, and flat modules and ideals in associative algebras
16Gxx Representation theory of associative rings and algebras
15B33 Matrices over special rings (quaternions, finite fields, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asano, K, Nichtkommutative hauptidealringe, () · JFM 64.0967.02
[2] Bass, H, Finitistic dimension and a homological generalization of semiprimary rings, Trans. amer. math. soc., 95, 466-488, (1960) · Zbl 0094.02201
[3] Cartan, H; Eilenberg, S, Homological algebra, (1956), Princeton Univ. Press Princeton N. J., · Zbl 0075.24305
[4] Chevalley, C, L’arithmétique dans LES algèbres de matrices, () · JFM 62.0102.01
[5] Dickson, L.E, Algebras and their arithmetics, (1923), University of Chicago Press Chicago · JFM 49.0079.01
[6] Fitting, H, Über den zusammenhang zwischen dem begriff der gleichartigkeit zweier ideale und dem äquivalenzbegriff der elementarteilertheorie, Math. ann., 112, 572-582, (1936) · JFM 62.0091.04
[7] Goldie, A.W, Non-commutative principal ideal rings, Archiv. math. (basel), 13, 213-221, (1962) · Zbl 0101.27304
[8] Jacobson, N, Pseudo-linear transformations, Ann. of math., 38, 484-507, (1937) · JFM 63.0087.01
[9] Jacobson, N, The theory of rings, American mathematical society, mathematical surveys 2, (1943), Providence, R.I.
[10] Jategaonkar, A.V, Left principal ideal rings, () · Zbl 0192.37901
[11] Kaplansky, I, Elementary divisors and modules, Trans. amer. math. soc., 66, 464-491, (1949) · Zbl 0036.01903
[12] Krull, W, Matrizen, moduln, und verallgemeinerte abelsche gruppen im bereich der ganzen algebraischen zahlen, Heidelberger akad. wiss., 2, 13-38, (1932) · JFM 58.0101.02
[13] Lambek, J, Lectures on rings and modules, (1966), Blaisdell Waltham, Mass., · Zbl 0143.26403
[14] Levy, L.S, Decomposing pairs of modules, Trans. amer. math. soc., 122, 64-80, (1966) · Zbl 0145.04403
[15] Levy, L.S, Almost diagonal matrices over Dedekind domains, Math. Z., 125, 89-99, (1972) · Zbl 0211.36903
[16] Nakayama, T, A note on the elementary divisor theory in non-commutative domains, Bull. amer. math. soc., 44, 719-723, (1938) · JFM 64.0968.01
[17] Reiner, I, A survey of integral representation theory, Bull. amer. math. soc., 76, 159-227, (1970) · Zbl 0194.04701
[18] Robson, J.C, Non-commutative Dedekind rings, J. algebra, 9, 249-265, (1968) · Zbl 0174.06801
[19] Robson, J.C, A note on Dedekind prime rings, Bull. London math. soc., 3, 42-46, (1971) · Zbl 0226.16008
[20] Eisenbud, D; Robson, J.C, Modules over Dedekind prime rings, J. algebra, 16, 67-85, (1970) · Zbl 0211.05603
[21] Eisenbud, D; Robson, J.C, Hereditary Noetherian prime rings, J. algebra, 16, 86-104, (1970) · Zbl 0211.05701
[22] Gwynne, W.D; Robson, J.C, Completions of Dedekind prime rings, J. London math. soc., 4, 346-352, (1971) · Zbl 0227.16005
[23] McConnell, J.C; Robson, J.C, Homomorphisms and extensions of modules over A1 and related rings, J. algebra, 26, 319-342, (1973) · Zbl 0266.16031
[24] Smith, H.J.S, On systems of linear indeterminate equations and congruences, Philos. trans. roy. soc. London, 151, 293-326, (1861)
[25] Smith, H.J.S, Arithmetical notes, (), 236-253 · JFM 05.0153.01
[26] Steinitz, E; Steinitz, E, Rechteckige systeme und moduln in algebraicher zahlkörper. II, Math. ann., Math. ann., 72, 297-345, (1912) · JFM 43.0274.01
[27] Teichmüller, O, Der elementarteilsatz für nichtkommutative ringe, Abh. preuss. acad. wiss. phys.-math. kl., 169-177, (1937) · JFM 63.0087.03
[28] van der Waerden, B.L, Moderne algebra, (1930), Springer Berlin-New York · Zbl 0297.01014
[29] Warfield, R.B, A Krull-Schmidt theorem for infinite sums of modules, (), 460-465 · Zbl 0176.31401
[30] Webber, D.B, Ideals and modules of simple Noetherian hereditary rings, J. algebra, 16, 239-242, (1970) · Zbl 0211.06201
[31] Wedderburn, J.H.M, Non-commutative domains of integrity, J. reine angew. math., 167, 129-141, (1932) · Zbl 0003.20103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.