×

zbMATH — the first resource for mathematics

The analytic continuation of generalized functions with respect to a parameter. (English. Russian original) Zbl 0282.46038
Funct. Anal. Appl. 6, 273-285 (1973); translation from Funkts. Anal. Prilozh. 6, No. 4, 26-40 (1972).

MSC:
46F10 Operations with distributions and generalized functions
30B40 Analytic continuation of functions of one complex variable
30D20 Entire functions of one complex variable (general theory)
30D30 Meromorphic functions of one complex variable (general theory)
PDF BibTeX Cite
Full Text: DOI
References:
[1] M. F. Atiyah, ”Resolution of singularities and division of distributions,” Comm. Pure Appl. Math.,23, No. 2, 145-150 (1970). · Zbl 0188.19405
[2] I. N. Bernshtein and S. I. Gel’fand, ”Meromorphy of the function P?,” Funkts. Analiz,3, No. 1, 84-86 (1969).
[3] I. N. Bernshtein, ”Modules over a ring of differential operators. Study of fundamental solutions of equations with constant coefficients,” Funkts. Analiz,5, No. 2, 1-16 (1971). · Zbl 0246.17008
[4] I. N. Bernshtein, ”The possibility of analytic continuation off ? for certain polynomialsf,” Funkts. Analiz,2, No. 1, 92-93 (1968).
[5] I. M. Gel’fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatgiz, Moscow (1959). · Zbl 0091.11102
[6] V. Guillemin, D. Quillen, and S. Sternberg, ”The integrability of characteristics,” Comm. Pure Appl. Math.,23, No. 1, 39-77 (1970). · Zbl 0203.33002
[7] M. Riesz, ”L’integrale de Riemann-Liouville et le probléme de Cauchy,” Acta Math.,81, 1-223 (1949). · Zbl 0033.27601
[8] I. E. Roos, ”Algébre homologique. Determination de la dimension homologique globale des algébres de Weyl,” C. R. Acad. Sci., Paris, 274 (1972). · Zbl 0227.16021
[9] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Van Nostrand (1960). · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.