×

Poincaré’s conjecture and the homeotopy group of a closed orientable 2- manifold. (English) Zbl 0282.55003


MSC:

57M40 Characterizations of the Euclidean \(3\)-space and the \(3\)-sphere (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.2307/2038376 · Zbl 0253.55001
[2] DOI: 10.1007/BF02940650 · Zbl 0007.08102
[3] DOI: 10.1007/BF01433472 · Zbl 0208.10601
[4] DOI: 10.1016/0040-9383(68)90027-X · Zbl 0157.54501
[5] Traub, Jnl. of Research, Natural Bureau of Standards 71 pp 53– (1967) · Zbl 0229.57006
[6] Stallings., How not to prove the Poincaré conjecture (1965)
[7] DOI: 10.1090/S0002-9904-1960-10511-3 · Zbl 0111.18901
[8] DOI: 10.2307/1970239 · Zbl 0099.39202
[9] DOI: 10.1007/BF03014091 · JFM 35.0504.13
[10] DOI: 10.2307/1970216 · Zbl 0113.38505
[11] DOI: 10.1007/BF01449158 · Zbl 0009.03901
[12] Magnus, Combinatorial Group Theory (1966)
[13] DOI: 10.2307/1995287 · Zbl 0199.58601
[14] DOI: 10.2307/1990620 · Zbl 0034.30503
[15] Birman, Mapping class groups of closed surfaces as covering spaces (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.