Zur Symmetrisierung von Funktionen auf Sphären. (German) Zbl 0283.26015


26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
26D20 Other analytical inequalities
Full Text: DOI EuDML


[1] Agmon, S.: Elliptic Boundary Value Problems. New York-London: van Nostrand 1955 · Zbl 0068.08005
[2] Bauer, H.: Wahrscheinlichkeitstheorie. Berlin: de Gruyter 1968
[3] Brothers, J. E.: Integral geometry in homogeneous spaces. Trans. Amer. math. Soc.124, 480-517 (1966) · Zbl 0166.18103
[4] Dieudonné, J.: Eléments d’Analyse III, Paris: Gauthier-Villars 1970 · Zbl 0208.31802
[5] Dinghas, A.: Einfacher Beweis der isoperimetrischen Eigenschaft der Kugel in Riemannschen Räumen konstanter Krümmung. Math. Nach.2, 107-113 (1949) · Zbl 0033.39902
[6] Federer, H.: Geometric Measure Theory. Berlin-Heidelberg-New York: Springer 1969 · Zbl 0176.00801
[7] Halmos, P. R.: Measure Theory. New York-London: van Nostrand 1969
[8] Morrey, Ch. B.: Multiple Integrals in the calculus of variations. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0142.38701
[9] Moser, J.: A Sharp Form of an Inequality by N. Trudinger. Indiana Univ. Math. J.20, 1077-1092 (1971) · Zbl 0213.13001
[10] Moser, J.: On a Nonlinear Problem in Differential Geometry. Preprint: Courant Institute of Math. Sciences, New York University, 1971 · Zbl 0202.54701
[11] Munroe, M. E.: Introduction to measure and integration. Cambridge: Addison-Wesley 1953 · Zbl 0050.05603
[12] Rogers, C. A.: Hausdorff measures. Cambridge: University Press 1970 · Zbl 0204.37601
[13] Schmidt, E.: Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. Math. Nachr.1, 81-157 (1948) · Zbl 0030.07602
[14] Sperner, E., jr.: Symmetrisierung für Funktionen mehrer reeller Variablen. Manuscripta math., erscheint demnächst
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.