×

zbMATH — the first resource for mathematics

Infinite particle systems. (English) Zbl 0283.60057

MSC:
60G99 Stochastic processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. · Zbl 0084.10402
[2] T. E. Harris, Diffusion with ”collisions” between particles, J. Appl. Probability 2 (1965), 323 – 338. · Zbl 0139.34804
[3] T. E. Harris, Random measures and motions of point processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 85 – 115. · Zbl 0194.49204
[4] J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1967), 36 – 58 (German). · Zbl 0164.46601
[5] Czesław Ryll-Nardzewski, Remarks on processes of calls, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 455 – 465.
[6] I. M. Slivnjak, Some properties of stationary streams of homogeneous random events, Teor. Verojatnost. i Primenen. 7 (1962), 347 – 352 (Russian, with English summary).
[7] Frank Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246 – 290 (1970). · Zbl 0312.60060
[8] Charles Stone, On a theorem by Dobrushin, Ann. Math. Statist 39 (1968), 1391 – 1401. · Zbl 0269.60045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.