×

Finite element methods for symmetric hyperbolic equations. (English) Zbl 0283.65061


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ciarlet, P. G., Raviart, P.-A.: General Lagrange and Hermite interpolation inR n with applications to finite element methods. Arch. Rat. Mech. Anal. Vol.46, 177-199 (1972) · Zbl 0243.41004
[2] Ciarlet, P. G., Raviart, P.-A.: Interpolation theory over curved elements, with applications to finite element methods. Computer Methods in Applied Mechanics and Engineering1, 217-249 (1972) · Zbl 0261.65079 · doi:10.1016/0045-7825(72)90006-0
[3] Friedrichs, K. O.: Symmetric positive linear differential equations. Comm. Pure Appl. Math.11, 333-418 (1958) · Zbl 0083.31802 · doi:10.1002/cpa.3160110306
[4] Katsanis, Th.: Numerical solution of symmetric positive differential equations. Math. Comp.22, 763-783 (1968) · Zbl 0176.15203 · doi:10.1090/S0025-5718-1968-0245214-9
[5] Lax, P. D., Philipps, R. S.: Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math.13, 427-455 (1960) · Zbl 0094.07502 · doi:10.1002/cpa.3160130307
[6] Nécas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie Editeurs 1967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.