×

zbMATH — the first resource for mathematics

On the group of automorphisms of a function field of genus at least two. (English) Zbl 0284.12007

MSC:
11R58 Arithmetic theory of algebraic function fields
11S15 Ramification and extension theory
12F10 Separable extensions, Galois theory
14H05 Algebraic functions and function fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chevalley, C., Introduction to the theory of algebraic functions of one variable, Am. math. soc., (1951), Providence, R.I. · Zbl 0045.32301
[2] Hasse, H., Theorie der relative zyklischen algebraischen funktionenkörper, Crelle, 172, 37-54, (1934) · JFM 60.0097.01
[3] Hasse, H., Zahlentheorie, (1963), Akademie-Verlag Berlin · Zbl 0035.02002
[4] Hurwitz, A., Über algebraische gebilde mit eindeutigen transformationen in sich, Math. ann., 41, 403-442, (1893) · JFM 24.0380.02
[5] Iwasawa, K.; Tamagawa, T.; Iwasawa, K.; Tamagawa, T.; Iwasawa, K.; Tamagawa, T., On the group of automorphisms of a function field, J. math. soc. Japan, J. math. soc. Japan, J. math. soc. Japan, 4, 151, 203-204, (1952) · Zbl 0049.30801
[6] Roquette, P., Abschätzung der automorphismenanzahl von funktionenköpern, Math. Z., 117, 157-163, (1970)
[7] Schmid, H.L., Über die automorphismen eines algebraischen funktionenkörpers von primzahlcharakteristik, Crelle, 179, 5-15, (1938) · Zbl 0019.00301
[8] Serre, J.-P., Corps locaux, (1962), Hermann Paris · Zbl 0137.02601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.