×

On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities. (English) Zbl 0284.14005

Trans. Am. Math. Soc. 181, 89-123 (1973); Appendix and supplementary bibliography by Phillip A. Griffith. Ibid. 123-126 (1973).

MSC:

14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14E05 Rational and birational maps
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] István Fáry, Cohomologie des variétés algébriques, Ann. of Math. (2) 65 (1957), 21 – 73 (French). · Zbl 0082.36504
[2] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[3] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626. MR 32 #1730. · Zbl 0118.15802
[4] S. Lefschetz, L’analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924. · JFM 50.0663.01
[5] A. P. Ogg, On pencils of curves of genus two, Topology 5 (1966), 355 – 362. · Zbl 0145.17802
[6] E. Picard and G. Simart, Théorie des fonctions algébriques de deux variables indépendantes. Vols. I, II, Gauthier-Villars, Paris, 1897, 1906. · JFM 37.0404.02
[7] Andrew H. Wallace, Homology theory on algebraic varieties, International Series of Monographs on Pure and Applied Mathematics. Vol. 6, Pergamon Press, New York-London-Paris-Los Angeles, 1958. · Zbl 0100.16303
[8] Oscar Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), no. 1, 131 – 141. · Zbl 0016.04102
[9] A. B. Žižčenko, Homology groups of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 765 – 788 (Russian).
[10] Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103 – 161 (German, with English summary). · Zbl 0186.26101
[11] C. H. Clemens Jr., Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93 – 108. · Zbl 0185.51302
[12] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). · Zbl 0244.14004
[13] P. Deligne and A. Grothendieck, S.G.A. seminars on monodromy, Inst. Hautes Études Sci., Paris (mineograph notes).
[14] Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228 – 296. · Zbl 0214.19802
[15] Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175 – 232. · Zbl 0221.14007
[16] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[17] W. Schmid, Degeneration of Hodge structures (to appear). · Zbl 0617.14005
[18] André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). · Zbl 0137.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.