×

zbMATH — the first resource for mathematics

Classification of algebraic varieties. I. (English) Zbl 0284.14015

MSC:
14J10 Families, moduli, classification: algebraic theory
14J25 Special surfaces
14K10 Algebraic moduli of abelian varieties, classification
14M07 Low codimension problems in algebraic geometry
14E99 Birational geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Blanchard : Sur les variétés analytiques complexes . Ann. Ecole Norm. Sup., 73 (1956) 157-202. · Zbl 0073.37503
[2] E. Calabi : On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology . A symposium in honor of S. Lefschetz. 78-89 (1957) Princeton University Press. · Zbl 0080.15002
[3] H. Cartan : Quotients of complex analytic spaces . International Colloquium on Function theory. Tata Institute, Bombay (1960) 1-15. · Zbl 0122.08702
[4] P. Deligne : Théorème de Lefschetz et critères de dégénérescence de suites spectrales . Publ. Math. I.H.E.S., 35 (1968) 107-126. · Zbl 0159.22501
[5] P. Deligne : Théorie de Hodge . Publ. Math. I.H.E.S., 40 (1972) 5-57. · Zbl 0219.14007
[6] E. Freitag : Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen I . J. Rein. Angew. Math., 247 (1971) 97-117. · Zbl 0232.10018
[7] S. Fujiki , S. Nakano : Supplement to’On the inverse of monoidal transformation’ . Pub. Research Inst. Math. Sci. Kyoto Univ. 7 (1972) 637-644. · Zbl 0234.32019
[8] R.C. Gunning : Lectures on modular forms . Annals, of Math. Studies, 48 (1962) Princeton University Press. · Zbl 0178.42901
[9] R. Hartshorne : Ample vector bundles . Publ. Math. I.H.E.S., 29 (1966) 319-349. · Zbl 0173.49003
[10] H. Hironaka : Resolution of singularity of an algebraic variety of characteristic zero I, II . Ann. Math., 79, (1964) 109-326. · Zbl 0122.38603
[11] H. Hironaka : Bimeromorphic smoothing of a complex-analytic space . (1971) Preprint, University of Warwick. · Zbl 0407.32006
[12] F. Hirzebruch : Über vierdimensionale Riemannsche Flächen mehrdeutigen analytische Funktionen von zwei komplexen Veränderlichen . Math. Ann., 126 (1953) 1-22. · Zbl 0093.27605
[13] S. Iitaka : On D-dimensions of algebraic varieties . J. Math. Soc. Japan., 23 (1971) 356-373. · Zbl 0212.53802
[14] S. Iitaka : Genera and classification of algebraic varieties I . Sugaku, 24 (1972) 14-27.
[15] S. Iitaka : On some new birational invariants of algebraic varieties, and their application to rationality of certain algebraic varieties of dimension 3 . J. Math. Soc. Japan, 24 (1972) 384-396. · Zbl 0236.14015
[16] S. Kawai : Elliptic fibre spaces over compact surfaces . Comment. Math. Univ. St. Paul., 15 (1967) 119-138. · Zbl 0174.24401
[17] S. Kobayashi , T. Ochiai : On complex manifolds with positive tangent bundles . J. Math. Soc. Japan, 22 (1970) 499-525. · Zbl 0197.36003
[18] S. Kobayashi , T. Ochiai : Three dimensional compact Kähler manifolds with positive holomorphic bisectional curvature . J. Math. Soc. Japan, 24 (1972) 465-480. · Zbl 0234.53051
[19] K. Kodaira : On compact analytic surfaces II, III . Ann Math., 77 (1963) 563-626; ibid. 78 (1963) 1-40. · Zbl 0171.19601
[20] K. Kodaira : On the structure of compact complex analytic surfaces; I, II, IV . Ann. J. Math., 86 (1964) 751-798; ibid. 88 (1966) 682-721, ibid. 90 (1968) 1048-1066. · Zbl 0193.37702
[21] K. Kodaira , D.C. Spencer : On deformations of complex analytic structures I, II . Ann. Math., 67 (1958) 328-466. · Zbl 0128.16901
[22] S. Lang : Abelian varieties . New York. (1959) Interscience Publishers. · Zbl 0098.13201
[23] H. Matsumura : On algebraic groups of birational transformations . Leincei Rend. Sc. fis. Mat. e nat., 34 (1963) 151-155. · Zbl 0134.16601
[24] Y. Matsushima : Hodge manifolds with zero first Chern class . J. Diff. Geom., 3 (1969) 377-480. · Zbl 0201.25902
[25] B.G. Moišezon : On n-dimensional compact varieties with n algebraically independent meromorphic functions I, II, III . Isv. Akad. Nauk SSSR Ser. Mat., 30 (1966) 133-174, 345-386, 621-656. A.M.S. translations Ser. 2, 63, 51-177. · Zbl 0186.26204
[26] I. Nakamura , K. Ueno : On addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds . J. Math. Soc. Japan, 25 (1973) 363-371. · Zbl 0254.32027
[27] S. Nakano : On the inverse of monoidal transformation . Publ. Research Inst. Math. Sci. Kyoto University, 6 (1971) 483-502. · Zbl 0234.32017
[28] Y. Namikawa , K. Ueno : The complete classification of fibres in pencils of curves of genus two . Manuscripta Math., 9 (1973) 143-186. · Zbl 0263.14007
[29] Y. Namikawa , K. Ueno : On fibres in families of curves of genus two, I. Singular fibres of elliptic type, II. Singular fibres of parabolic type. Number Theory Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki (1973) 297-371, Tokyo, Kinokuniya. In Preparation. · Zbl 0268.14004
[30] I.R. Safarebic et al.: Algebraic surfaces . Proc. Steklov Institut Math. 75 (1965), English translation, A.M.S. (1967)
[31] G. Scheja : Riemannsche Hebbarkeitssätze für Kohomologieklassen . Math. Ann., 144 (1961) 345-360. · Zbl 0112.38001
[32] M. Schlessinger : Rigidity of Quotient Singularities . Inventiones math., 14 (1971) 17-26. · Zbl 0232.14005
[33] E. Spanier : The homology of Kummer manifolds . Proc. Amer. Math. Soc., 7, (1956) 153-160 · Zbl 0070.18105
[34] T. Suwa : On hyperelliptic surfaces . J. Fac. Sci. Umiv. Tokyo, Se I.A., 16 (1970) 469-476. · Zbl 0256.14014
[35] K. Ueno : On fibre spaces of normally polarized abelian varieties of dimension 2 I, II, . Singular fibres of the first kind ; III, Singular fibres of the second kind . J. Fac. Sci. Univ. Tokyo. Se I.A., 17 (1971) 37-95; ibid. 19 (1972) 163-199 (in preparation). · Zbl 0258.14010
[36] K. Ueno : Classification of algebraic varieties and compact complex manifolds . Lecture notes. (to appear) · Zbl 0299.14006
[37] K. Ueno : Classification of algebraic varieties II. Kodaira dimensions of certain fibre spaces (in preparation) .
[38] A. Weil : Variétés Kählériennes . (1958) Paris Hermann. · Zbl 0137.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.