×

zbMATH — the first resource for mathematics

Compatible triangular finite-elements. (English) Zbl 0284.35021

MSC:
35J30 Higher-order elliptic equations
35A99 General topics in partial differential equations
35A35 Theoretical approximation in context of PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] Barnhill, R.E; Birkhoff, G; Gordon, W.J; Barnhill, R.E; Birkhoff, G; Gordon, W.J, Smooth interpolation in triangles, (), J. approx. theory, 8, 114-128, (1973), Revised version in · Zbl 0271.41002
[3] Mansfield, Lois, Error bounds for smooth interpolation in triangles, J. approx. theory, 11, (1974), in press · Zbl 0286.41001
[4] Bazeley, G.P; Cheung, Y.K; Irons, B.M; Zienkiewicz, O.C, Triangular elements in bending …, ()
[5] Birkhoff, G, Tricubic interpolation in triangles, (), 1162-1164 · Zbl 0242.41007
[6] Birkhoff, G, Interpolation to boundary data in triangles, J. math. anal. appl., 42, 474-484, (1973) · Zbl 0262.41003
[7] Bramble, J.H; Zlámal, M, Triangular elements in the finite element method, Math. comp., 24, 809-820, (1970) · Zbl 0226.65073
[8] Felippa, C.A; Clough, R.W, The finite element in solid mechanics, (), 210-252
[9] Goël, J.J, Construction of basic functions for … Ritz’ method, Numer. math., 12, 435-447, (1968) · Zbl 0271.65061
[10] Irons, B.M, A conforming quartic triangular element for plate bending, Int. J. numer. meth. eng., 1, 29-45, (1969) · Zbl 0247.73071
[11] Mitchell, A.R, Introduction to the mathematics of finite elements, () · Zbl 0288.65061
[12] Ženišek, M, Interpolation polynomials on the triangle, Numer. math., 15, 283-296, (1970) · Zbl 0216.38901
[13] Zienkiewicz, O.C, The finite element method, (1971), McGraw-Hill New York · Zbl 0237.73071
[14] Dupuis, G; Goël, J.-J, Finite element with high degree of regularity, Int. J. numer. meth. eng., 2, 563-577, (1970) · Zbl 0257.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.