×

Lusternik-Schnirelmann category and the Moore spectral sequence. (English) Zbl 0284.55012


MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
55T20 Eilenberg-Moore spectral sequences
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Adams, J.F., Hilton, P.J.: On the Chain Algebra of a Loop Space. Commentarii math. Helvet.30, 305-330 (1956) · Zbl 0071.16403
[2] Araki, S.: On the Non-commutativity of Pontryagin Rings of some Compact Exceptional Lie Groups. Nagoya math. J.17, 225-260 (1960) · Zbl 0178.26301
[3] Araki, S., Shikata, Y.: Cohomology mod2 of the Compact Exceptional GroupE 8. Proc. Japan Acad.37, 619-622 (1961) · Zbl 0149.20201
[4] Arkowitz, M., Curjel, C.R.: Homotopy Commutators of Finite Order(I). Quart. J. Math. Oxford, II. Ser.,14, 213-219 (1963) · Zbl 0122.17802
[5] Barcus, W.D., Meyer, J.P.: The Suspension of a Loop Space. Amer. J. Math.80, 895-920 (1958) · Zbl 0086.37504
[6] Berstein, I.: Homotopy mod of Spaces of Category 2. Commentarii math. Helvet.35, 9-14 (1961) · Zbl 0095.16901
[7] Berstein, I., Ganea, T.: Homotopical Nilpotency. Illinois J. Math.5, 99-130 (1961) · Zbl 0096.17602
[8] Berstein, I.: On the Homotopy Commutativity of Suspensions. Illinois J. Math.6, 336-340 (1962) · Zbl 0107.40503
[9] Berstein, I., Hilton, P. J.: Category and Generalized Hopf Invariants Illinois J. Math.4, 437-451 (1960) · Zbl 0113.38301
[10] Borel, A.: Sur la Cohomologie des Espaces Fibres Principaux...Ann. of. Math., II. Ser., 115-207 (1953) · Zbl 0052.40001
[11] Borel, A.: Sur l’Homologie et la Cohomologie des Groups de Lie Compacts. Amer. J. Math.76, 273-342 (1954) · Zbl 0056.16401
[12] Bott, R., Samelson, H.: Applications of Morse Theory of the Topology of Lie Groups. Amer. J. Math.80, 964-1029 (1958) · Zbl 0101.39702
[13] Clark, A.: Homotopy Commutativity and the Moore Spectral Sequence. Pacific J. Math.15, 65-74 (1965) · Zbl 0129.38805
[14] Dold, A., Lashof, R.: Principal Quasifibrations and Fibre Homotopy Equivalence of Bundles. Illinois J. Math.3, 285-305 (1959) · Zbl 0088.15301
[15] Ganea, T.: Lusternik Schnirelmann Category and Strong Category. Illinois J. Math.11, 416-427 (1967) · Zbl 0149.40703
[16] Ganea, T.: Some Problems on Numerical Homotopy Invariants, In: Symposium in Algebraic Topology (Seattle 1971), pp. 23-30, Lecture Notes in Math.249, Berlin-Heidelberg-New York: Springer 1971
[17] Ganea, T.: Sur quelque invariants numériques du type d’homotopie Dissertation. Paris May 1962
[18] Ganea, T.: A generalization of the Homology and Homotopy Suspension. Commentarii math. Helvet.39, 295-332 (1965) · Zbl 0142.40702
[19] Ginsberg, M.: On the Lusternik Schnirelmann Category. Ann. of Math.,II. Ser.,7, 71-84 (1963)
[20] Gitler, S.: Nota sobre la Transpotencia de Cartan. Bol. Soc. mat. MexicanaII. Ser.,7, 71-84 (1962)
[21] Hardie, K. A.: On cati X. J. London math. Soc.II. Ser.,3, 91-92 (1971) · Zbl 0185.51201
[22] Hilton, P.J.: Homotopy Theory and Duality. New York-London-Paris: Gordon and Breach, 1965 · Zbl 0152.21901
[23] Hilton, P. J., Ganea, T., Peterson, F.: On the Homotopy Commutativity of Loop Spaces and Suspensions. Topology,1, 133-142 (1962) · Zbl 0109.41403
[24] Kraines, D.: Loop Operations and the Homology of Fibrations. To appear in Trans. Amer. math. Soc.
[25] MacLane, S.: Homology. Berlin-Heidelberg-New York: Springer 1963 · Zbl 0133.26502
[26] May, J.P., Guggenheim, V.K.A.M.: On the Theory and Applications of Differential Torison Products. To appear
[27] Moore, J.C.: Algébre Homologique et Homologie des Espaces Classifiants. In: Seminaire Cartan 1959/60, Exposé 7 37 pp. Paris: Secrétariat Mathematique 1961
[28] Rothenberg, M., Steenrod, N.: The Cohomology of Classifying Spaces ofH-Spaces. Bull. Amer. math. Soc.71, 872-875 (1965) · Zbl 0132.19201
[29] Rothenberg, M., Steenrod, N.: As above. Princeton Univ. preprint
[30] Samelson, H.: On the Relationship between the Whitehead and Pontryagin Product. Amer. J. math.75, 744-752 (1953) · Zbl 0051.13904
[31] Sapojnikoff, V.: The Hopf Algebra Structure for the Exceptional Lie Groups. Princeton Univ. Preprint · Zbl 0275.02006
[32] Schochet, C.: Cobordism from an Algebraic Point of view. Aarhus Lecture Notes No. 29. Aarhus: Aarhus Universitet 1971 · Zbl 0222.57025
[33] Schweitzer, P.: Secondary Cohomology operations Induced by the Diagonal Map. Topology3, 337-355 (1965) · Zbl 0137.42401
[34] Spanier, E.H.: Algebraic Topology. New York-San Francisco-St. Louis. McGraw-Hill 1966 · Zbl 0145.43303
[35] Smith, L.: Lectures on the Eilenberg-Moore spectral sequence. Lecture Notes in Math.134, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0197.19702
[36] Sternstein, M.: Necessary and Sufficient Conditions for Homotopy Classification. Proc. Amer. math. Soc.34, 250-256 (1972) · Zbl 0239.55021
[37] Sullivan, D.: Geometric Topology. MIT mimeographed Notes, June 1970
[38] Sugawara, M.: On the Homotopy Commutativity of Groups and Loop Spaces. Mem. Coll. Sci., Univ. of Kyoto, Ser. A,33, 257-269 (1960) · Zbl 0113.16903
[39] ?varc, A.S.: The Genus of a Fibre Space. Amer. math. Soc., Translat., II. Ser.,55, 49-140
[40] Takens, F.: The Lusternik Schnirelmann Categories of a Product Space. Compositio math.22, 175-180 (1970) · Zbl 0198.28302
[41] Thom, R.: L Homologie des espaces Fonctionnels. In: Colloque de Topologie Algébrique (Louvain 1956) pp. 29-39. Liège: Georges Thone; Paris: Masson et Cie 1957
[42] Toomer, G.H.: Topological Localization, Category and Cocategory. To appear in Canadian J. Math · Zbl 0301.55005
[43] Toomer, G.H.: Two Applications of Homology Decompositions. To appear in Canadian J. Math · Zbl 0299.55010
[44] Uehara, H., Massey, W.: The Jacobi Identity for Whitehead Products. In: Algebraic Geometry and Topology Symposium in Honour of S. Lefshetz (Princeton 1954) pp. 361-377. Princeton: Princeton University Press 1957 · Zbl 0077.36402
[45] Whitehead, G.W.: The Homology Suspension. In Colloque de Topologie Algebrique (Louvain, 1956) pp. 89-95. Liège: Georges Thone; Paris: Masson et Cie. 1957
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.