Chung, Kai Lai; Walsh, John B. Meyer’s theorem on predictability. (English) Zbl 0284.60069 Z. Wahrscheinlichkeitstheor. Verw. Geb. 29, 253-256 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 60J40 Right processes 60J99 Markov processes PDF BibTeX XML Cite \textit{K. L. Chung} and \textit{J. B. Walsh}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 29, 253--256 (1974; Zbl 0284.60069) Full Text: DOI OpenURL References: [1] Meyer, P. A., Decomposition of supermartingales: the uniqueness theorem, Illinois J. Math., 7, 1-17 (1963) · Zbl 0133.40401 [2] Meyer, P. A., Processus de Markov, Lecture Notes in Mathematics. Vol. 26 (1967), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0189.51403 [3] Blumenthal, R. M.; Getoor, R. K., Markov processes and potential theory (1968), New York: Academic Press, New York · Zbl 0169.49204 [4] Dellacherie, C., Capacités et processus stochastiques (1972), Berlin: Springer, Berlin · Zbl 0246.60032 [5] Meyer, P. A., Probabilités et potential (1966), Paris: Hermann, Paris [6] Getoor, R. K., Regularity of excessive functions II, Ann. Math. Statist., 42, 2057-2063 (1971) · Zbl 0273.60057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.