Schoenberg, I. J.; Silliman, S. D. On semicardinal quadrature formulae. (English) Zbl 0284.65011 Math. Comput. 28, 483-497 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 20 Documents MSC: 65D30 Numerical integration 41A15 Spline approximation 41A55 Approximate quadratures 41A05 Interpolation in approximation theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167 – 206. · Zbl 0202.34803 [2] I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167 – 206. · Zbl 0202.34803 [3] I. J. Schoenberg, Cardinal interpolation and spline functions. VI. Semi-cardinal interpolation and quadrature formulae, J. Analyse Math. 27 (1974), 159 – 204. , https://doi.org/10.1007/BF02788646 I. J. Schoenberg, Cardinal interpolation and spline functions. VII. The behavior of cardinal spline interpolants as their degree tends to infinity, J. Analyse Math. 27 (1974), 205 – 229. , https://doi.org/10.1007/BF02788647 Carl de Boor and I. J. Schoenberg, Cardinal interpolation and spline functions. VIII. The Budan-Fourier theorem for splines and applications, Spline functions (Proc. Internat. Sympos., Karlsruhe, 1975) Springer, Berlin, 1976, pp. 1 – 79. Lecture Notes in Math., Vol. 501. [4] I. J. Schoenberg, Cardinal spline interpolation, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. · Zbl 0264.41003 [5] I. J. Schoenberg and S. D. Silliman, On semi-cardinal quadrature formulae, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 461 – 467. · Zbl 0319.41009 [6] S. D. Silliman, ”On complete semi-cardinal quadrature formulae.” (To appear.) · Zbl 0319.41009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.