zbMATH — the first resource for mathematics

Variational principles and the patch test. (English) Zbl 0284.73043

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Irons, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations pp 557– (1972)
[2] P. G. Ciarlet Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée 1973
[3] Strang, An Analysis of the Finite Element Method (1973) · Zbl 0356.65096
[4] Pian, Basis of finite element methods for solid continua, Int. J. Num. Meth. Engng. 1 pp 3– (1969) · Zbl 0252.73052
[5] Morley, The constant-moment plate bending element, J. Strain Analysis 6 pp 20– (1971)
[6] de Veubeke, Stress Analysis (1965)
[7] Sander, Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion-torsion, Bull. Soc. Roy. Sci., Liège 33 pp 456– (1964)
[8] B. Fraeijs de Veubeke Bending and stretching of plates 1965
[9] R. W. Clough J. L. Tocher Finite element stiffness matrices for analysis of plates in bending 515 545
[10] de Veubeke, Strain energy bounds in finite element analysis by slab analogy, J. Strain Analysis 2 pp 265– (1967)
[11] P. Beckers Les fonctions de tension dans la méthode des éléments finis 1973
[12] B. Fraeijs de Veubeke Diffusion des inconnues hyperstatiques dans les voilures à longerons couplés 1952
[13] K. O. Friedrichs Ein verfahren der Variationsrechnung 1929
[14] Courant, Methoden der Mathematischen Physik 1 (1931)
[15] de Veubeke, A new variational principle for finite elastic displacements, Int. J. Engng. Sci. 10 pp 745– (1972) · Zbl 0245.73031
[16] B. Fraeijs de Veubeke Deffusive equilibrium models 1973
[17] Sander, Application of the dual analysis principle, IUTAM Colloq. High Speed Comptng Elastic Struct. 1 pp 167– (1971)
[18] J. Connor Mixed models for plates H. Tottenham C. Brebbia
[19] A. Samuelsson Mixed finite element methods in theory and applications 1973
[20] Morley, A triangular equilibrium element with linearly varying bending moments for plate bending problems, J. Roy. Aeron. Soc. 71 pp 715– (1967)
[21] de Veubeke, An equilibrium model for plate bending, Int. J. Solids Struct. 4 pp 447– (1968) · Zbl 0168.22602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.