×

zbMATH — the first resource for mathematics

Validation of subgradient optimization. (English) Zbl 0284.90057

MSC:
90C05 Linear programming
90C10 Integer programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Abadie and M. Sakarovitch, ”Two methods of decomposition for linear programming”, in:Proceedings of the Princeton symposium on mathematical programming Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970) pp 1–23. · Zbl 0228.90027
[2] S. Agmon, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 382–392. · Zbl 0055.35001 · doi:10.4153/CJM-1954-037-2
[3] D.P. Bertsekas and S.K. Mitter, ”Steepest descent for optimization problems with nondifferentiable cost functionals”, in:Proceedings of the 5 th annual Princeton conference on information sciences and systems, 1971.
[4] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, ”Solution of a large-scale traveling-salesman problem”,Operations Research 2 (1954) 393–410. · doi:10.1287/opre.2.4.393
[5] V.F. Dem’janov, ”Seeking a minimax on a bounded set”,Soviet Mathematics Doklady 11 (1970) 517–521. [Translation of:Doklady Akademii Nauk SSSR 191 (1970).] · Zbl 0253.90053
[6] M.L. Fisher and J.F. Shapiro, ”Constructive duality in integer programming”, Working Paper OR 008-72, Operations Research Center, Massachusetts Institute of Technology, Cambridge, Mass. (April, 1972). · Zbl 0299.90010
[7] L.R. Ford, Jr. and D.R. Fulkerson,Flows in networks (Princeton University Press, Princeton, N.J., 1962). · Zbl 0106.34802
[8] A.M. Geoffrion, ”Elements of large-scale mathematical programming”,Management Science 16 (1970) 652–691. · Zbl 0209.22801 · doi:10.1287/mnsc.16.11.652
[9] R.C. Grinold, ”Steepest ascent for large-scale linear programs”,SIAM Review 14 (1972) 447–464. · Zbl 0281.90044 · doi:10.1137/1014070
[10] M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees”,Operations Research 18 (1970) 1138–1162. · Zbl 0226.90047 · doi:10.1287/opre.18.6.1138
[11] M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees: part II”,Mathematical Programming 1 (1971) 6–25. · Zbl 0232.90038 · doi:10.1007/BF01584070
[12] M. Held and R.M. Karp, ”A dynamic programming approach to sequencing problems”,Journal of the Society for Industrial and Applied Mathematics 10 (1962) 196–210. · Zbl 0106.14103 · doi:10.1137/0110015
[13] L.L. Karg and G.L. Thompson, ”A heuristic approach to solving traveling-salesman problems”,Management Science 10 (1964) 225–248. · doi:10.1287/mnsc.10.2.225
[14] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming”, in:Proceedings of the second Berkeley symposium on mathematical statistics and probability Ed. J. Neyman (University of California Press, Berkeley, Calif., 1951) pp. 481–492.
[15] L.S. Lasdon,Optimization theory for large systems (Macmillan, London, 1970). · Zbl 0224.90038
[16] R.E. Marsten and J.W. Blankenship, ”Boxstep: a new strategy for Lagrangian decomposition”, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Ill. (March, 1973).
[17] T. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 393–404. · Zbl 0055.35002 · doi:10.4153/CJM-1954-038-x
[18] J. von Neumann, ”A certain zero-sum two-person game equivalent to the optimal assignment problem”, in:Contributions to the theory of games, Vol. II, Eds. H.W. Kuhn and A.W. Tucker, Annals of Mathematics Study No. 28 (Princeton University Press, Princeton, N.J., 1953). · Zbl 0050.14105
[19] W. Oettli, ”An iterative method, having linear rate of convergence, for solving a pair of dual linear programs”,Mathematical Programming 3 (1972) 302–311. · Zbl 0259.90019 · doi:10.1007/BF01585003
[20] B.T. Poljak, ”A general method of solving extremum problems”, Soviet Mathematics Doklady 8 (1967) 593–597. [Translation ofDoklady Akademii Nauk SSSR 174 (1967).] · Zbl 0177.15102
[21] B.T. Poljak, ”Minimization of unsmooth functionals”,U.S.S.R. Computational Mathematics and Mathematical Physics 14–29. [Translation of: Žurnal Vyčislitel’no \(\mathop i\limits^ \vee \) Matematiki i Matematičesko \(\mathop i\limits^ \vee \) Fiziki 9 (1969) 509–521.]
[22] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, N.J., 1970). · Zbl 0193.18401
[23] N.Z. Shor, ”On the structure of algorithms for the numerical solution of optimal planning and design problems”, Dissertation, Cybernetics Institute, Academy of Sciences U.S.S.R. (1964).
[24] P. Wolfe, M. Held and R.M. Karp, ”Large-scale optimization and the relaxation method”, in:Proceedings of the 25 th national ACM meeting, Boston, Mass. (August 1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.