zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The interpreted type-free modal calculus MC$^\infty$. II: Foundations of MC$^\infty$. (English) Zbl 0285.02020
MSC:
03B45Modal logic, etc.
03E70Nonclassical set theories
WorldCat.org
Full Text: Numdam EuDML
References:
[1] or briefly [GIMC]: A. Bressan , A general interpreted modal calculus Yale Press , New Haven , 325 pp. ( 1972 ). MR 401432 | Zbl 0255.02015 · Zbl 0255.02015
[2] R. Carnap , Meaning and Necessity , 2 nd ed., The University of Chicago Press , 258 pp. ( 1956 ). Zbl 0034.00106 · Zbl 0034.00106
[3] E. Mendelson , Introduction to mathematical logic , 300 pp. Van Nostrand , New York ( 1963 ). MR 164867 | Zbl 0192.01901 · Zbl 0192.01901
[4] or briefly [IST]: J.D. Monk , Introduction to set theory , McGraw-Hill book Company , New York , 193 pp. ( 1969 ). MR 286668 | Zbl 0200.00066 · Zbl 0200.00066
[5] A. Mostowski , Über die Unabhängigkeit des Wohlordnungsatzes wom Ordnungsprinzip , Fundamenta mathematicae , vol. 32 , pp. 201 - 252 . Article | Zbl 0022.12004 · Zbl 0022.12004 · eudml:213059
[6] J.M. Rosser , Logic for mathematicians , McGraw-Hill , New York , 530 pp. ( 1953 ). MR 54531 | Zbl 0068.00707 · Zbl 0068.00707
[7] P. Suppes , Axiomatic set theory , Princeton , 265 pp. ( 1960 ). MR 114757 | Zbl 0091.05102 · Zbl 0091.05102