×

zbMATH — the first resource for mathematics

On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions. (English) Zbl 0285.35042

MSC:
35L15 Initial value problems for second-order hyperbolic equations
35P25 Scattering theory for PDEs
35B99 Qualitative properties of solutions to partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chadam, J. M., Global solutions of the Cauchy problem for the (classical) coupled Maxwell Dirac equations in one space dimension. J. Funct. Anal. 13, 173–184 (1973). · Zbl 0264.35058 · doi:10.1016/0022-1236(73)90043-8
[2] Chadam, J. M., On the Cauchy problem for the coupled Maxwell-Dirac equations. J. Math. Phys. 5, 597–604 (1972). · Zbl 0228.35075 · doi:10.1063/1.1666021
[3] Chadam, J. M., Asymptotics for u=m2u+G(x, t, u, ux, ut), I and II. Ann. Scuola Norm. Sup. (Pisa) 26, 33–65 and 67–95 (1972). · Zbl 0241.35014
[4] Chadam, J. M., & R. T. Glassey, Properties of the solutions of the (classical) coupled Maxwell-Dirac equations in one space dimension. To appear in Proc. Amer. Math. Soc. · Zbl 0258.35004
[5] Glassey, R. T., On the asymptotic behavior of nonlinear wave equations. Trans. Amer. Math. Soc. 182, 187–200 (1973). · Zbl 0269.35009 · doi:10.1090/S0002-9947-1973-0330782-7
[6] Gross, L., The Cauchy problem for the coupled Maxwell and Dirac equations. Comm. Pure Appl. Math. 19, 1–15 (1966). · Zbl 0137.32401 · doi:10.1002/cpa.3160190102
[7] Keller, J. B., On solutions of nonlinear wave equations. Comm. Pure Appl. Math. 10, 523–530 (1957). · Zbl 0090.31802 · doi:10.1002/cpa.3160100404
[8] Segal, I., Nonlinear semi-groups. Ann. Math. 78, 339–364 (1963). · Zbl 0204.16004 · doi:10.2307/1970347
[9] Segal, I., Quantization and Dispersion for Nonlinear Relativistic Equations in Mathematical Theory of Elementary Particles. M.I.T. Press, Cambridge, Mass., 1966, 79–108.
[10] Strauss, W., Decay and asymptotics for u=F(u). J. Funct. Anal. 2, 409–457 (1968). · Zbl 0182.13602 · doi:10.1016/0022-1236(68)90004-9
[11] Inoue, A., L’opérateur d’onde et de diffusion pour un système evolutif (d/dt)+iA(t). C.R. Acad. Sc. Paris, Ser. A 275, 1323–1325 (1972). · Zbl 0277.34063
[12] Howland, J., Stationary Scattering Theory for Time-dependent Hamiltonians, preprint, Aug. 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.