×

zbMATH — the first resource for mathematics

Piecewise polynomials and the finite element method. (English) Zbl 0285.41009

MSC:
41A15 Spline approximation
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
41A10 Approximation by polynomials
41A25 Rate of convergence, degree of approximation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49 (1943), 1 – 23. · Zbl 0063.00985
[2] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[3] Georges Pólya, Sur une interprétation de la méthode des différences finies qui peut fournir des bornes supérieures ou inférieures, C. R. Acad. Sci. Paris 235 (1952), 995 – 997 (French). · Zbl 0047.36603
[4] G. Pólya, Estimates for eigenvalues, Studies in mathematics and mechanics presented to Richard von Mises, Academic Press Inc., New York, 1954, pp. 200 – 207.
[5] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946), 45 – 99.
[6] Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81 – 98. · Zbl 0221.65174 · doi:10.1007/BF01395933 · doi.org
[7] Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689 – 710. · Zbl 0264.65068
[8] Gilbert Strang and Alan E. Berger, The change in solution due to change in domain, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 199 – 205. · Zbl 0259.35020
[9] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096
[10] J. L. Synge, Triangulation in the hypercircle method for plane problems, Proc. Roy. Irish Acad. Sect. A. 54 (1952), 341 – 367. · Zbl 0046.13605
[11] W. T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962), 21 – 38. · Zbl 0103.39603 · doi:10.4153/CJM-1962-002-9 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.