×

A generalized complementary pivoting algorithm. (English) Zbl 0285.90053


MSC:

90C10 Integer programming
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. Adler, ”Abstract polytopes”, Ph.D. Thesis, Department of Operations Research, Stanford University, Stanford, Calif. (1971).
[2] I. Adler, ”The Euler characteristic of abstract polytopes”, Tech. Rept. No. 71-11, Department of Operations Research, Stanford University, Stanford, Calif. (August 1971).
[3] I. Adler and G.B. Dantzig, ”Maximum diameter of abstract polytopes”, Tech. Rept. No. 71-12. Department of Operations Research, Stanford University, Stanford, Calif. (August 1971). · Zbl 0395.90051
[4] M. Bhezad and G. Chartrand,Introduction to the theory of graphs (Allyn and Bacon, Rockleigh, N.J., 1971).
[5] R.W. Cottle and G.B. Dantzig, ”A generalization of the linear complementarity problem”,Journal of Combinatorial Theory 8 (1) (1970). · Zbl 0186.23806
[6] G.B. Dantzig and R.W. Cottle, ”Positive (semi-) definite programming”, in:Nonlinear programming Ed. J. Abadie (North-Holland, Amsterdam, 1967). · Zbl 0178.22801
[7] B.C. Eaves, ”The linear complementarity problem in mathematical programming”, Tech. Rept. No. 69-4, Department of Operations Research, Stanford University, Stanford, Calif. (July 1969).
[8] B.C. Eaves, ”Computing Kakutani fixed points”,Journal of the Society for Industrial and Applied Mathematics 21 (2) (1971). · Zbl 0209.26404
[9] B.C. Eaves and R. Saigal, ”Homotopies for computation of fixed points on unbounded regions”,Mathematical Programming 3 (2) (1972) 225–237. · Zbl 0258.65060
[10] T. Hansen and H. Scarf, ”On the applications of a recent combinatorial algorithm”, Cowles Foundation Discussion Paper No. 272, Yale University, New Haven, Conn. (1969). · Zbl 0328.90052
[11] H.W. Kuhn, ”Approximate search for fixed points”, in:Computing methods in optimization problems 2 (Academic Press, New York, 1969).
[12] C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming”,Management Science 11 (7) (1965). · Zbl 0139.13103
[13] C.E. Lemke, ”On complementary pivot theory”, in:Mathematics of the decision sciences, Part I, Eds. G.B. Dantzig and A.F. Veinott, Jr. (A.M.S., Providence, R.I., 1968). · Zbl 0208.45502
[14] C.E. Lemke, ”Recent results on complementarity problems”, in:Nonlinear programming (Academic Press, New York, 1970). · Zbl 0227.90043
[15] C.E. Lemke and J.T. Howson, Jr., ”Equilibrium points of bimatrix games”,Journal of the Society for Industrial and Applied Mathematics 12 (2) (1964). · Zbl 0128.14804
[16] O.H. Merrill, ”Applications and extensions of an algorithm that computes fixed points of certain upper semi-continuous point to set mappings”, Ph.D. Dissertation, The University of Michigan, Ann. Arbor, Mich. (1972).
[17] H. Scarf,The computation of economic equilibria (Yale University Press, New Haven, Conn.), to appear. · Zbl 0311.90009
[18] M.J. Todd, ”Abstract complementary pivot theory”, Tech. Rept. No. 61, Dept. of Administrative Sciences, Yale University, New Haven, Conn. (October 1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.