Improvements of the Held-Karp algorithm for the symmetric traveling- salesman problem. (English) Zbl 0285.90055


90C10 Integer programming
65K05 Numerical mathematical programming methods
Full Text: DOI


[1] E.W. Dijkstra, ”A note on two problems in connexion with graphs”,Numerische Mathematik 1 (1959) 269–271. · Zbl 0092.16002 · doi:10.1007/BF01386390
[2] M.H. van Emden, ”Increasing the efficiency of quicksort”, Algorithm 402,Communications of the Association for Computing Machinery 13 (1970) 693–695. · Zbl 0198.50703
[3] K. Helbig Hansen, ”Sekvensproblemer med vaegt på modifikation af Held og Karp’s algoritme”, M.Sc. thesis, Institute of Datalogy, University of Copenhagen, Denmark (1971).
[4] M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees”,Operations Research 18 (1970) 1138–1162. · Zbl 0226.90047 · doi:10.1287/opre.18.6.1138
[5] M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees: Part II”,Mathematical Programming 1 (1971) 6–25. · Zbl 0232.90038 · doi:10.1007/BF01584070
[6] J.B. Kruskal, ”On the shortest spanning subtree of a graph and the traveling-salesman problem”,Proceedings of the American Mathematical Society 2 (1956) 48–50. · Zbl 0070.18404 · doi:10.1090/S0002-9939-1956-0078686-7
[7] R.C. Prim, ”Shortest connection networks and some generalizations”,Bell System Technical Journal 36 (1957) 1389–1401.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.