×

zbMATH — the first resource for mathematics

Approximations rationnelles de \(\pi\) et quelques autres nombres. (French) Zbl 0286.10017
Bull. Soc. Math. Fr., Suppl., Mém. 37, 121-132 (1974); (Journ’ees arithm’etiques, Grenoble 1973).

MSC:
11J04 Homogeneous approximation to one number
11J81 Transcendence (general theory)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] CHOONG K.Y. ; DAYKIN D.E. ; RATHBORNE C.R. - Rational approximations to \pi . Math. Comp. 25 ( 1971 ), pp. 387-392. Zbl 0221.10011 · Zbl 0221.10011 · doi:10.2307/2004936
[2] MAHLER K. - On the approximation of logarithms of algebraic numbers . Phil. Trans. Royal Soc. of London, A, 245, ( 1953 ), pp. 371-398. MR 14,624g | Zbl 0052.04404 · Zbl 0052.04404 · doi:10.1098/rsta.1953.0001
[3] MAHLER K. - On the approximation of \pi . Proc. K. Ned. Akad. Wet. Amsterdam, A, 56 (= Indag. Math. 15) ( 1953 ) pp. 29-42. MR 14,957a | Zbl 0053.36105 · Zbl 0053.36105
[4] MAHLER K. - Applications of some formulae by Hermite to the approximation of exponentials and logarithms . Math. Annales, 168 ( 1967 ) pp. 200-227. MR 34 #5754 | Zbl 0144.29201 · Zbl 0144.29201 · doi:10.1007/BF01361554 · eudml:161502
[5] ROSSER J.B. and SCHOENFELD L. - Approximate formulas for some functions of prime numbers . Illinois J. Math. 6 ( 1962 ) pp. 64-94. Article | MR 25 #1139 | Zbl 0122.05001 · Zbl 0122.05001 · minidml.mathdoc.fr
[6] SCHMIDT W.M. - Approximation to algebraic numbers . Enseign. Math., XVII ( 1971 ) pp. 187-253. (= Monographie n^\circ 19 de l’Enseignement Mathématique, Genève 1972 ). Zbl 0226.10033 · Zbl 0226.10033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.