×

zbMATH — the first resource for mathematics

On the factoriality of local rings of small embedding codimension. (English) Zbl 0286.13013

MSC:
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/2373050 · Zbl 0142.18602
[2] Bertin M.-J., p. Comptes Rendus 264 pp 653– (1967)
[3] Buchsbaum D. A., Gorenstein ideals of height 3 · Zbl 0519.13020
[4] DOI: 10.1070/SM1970v010n01ABEH001590 · Zbl 0215.07901
[5] DOI: 10.1070/SM1970v012n03ABEH000926 · Zbl 0251.13011
[6] DOI: 10.1007/BF01403182 · Zbl 0202.07602
[7] Grothendieck A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) (1962) · Zbl 0159.50402
[8] Grothendieck A., Springer lecture notes 41 pp 106– (1967)
[9] Grothendieck A., Springer lecture notes 224 (1971)
[10] Grothendieck A, Publ. Math. IHES (1960)
[11] Hartshorne R., Springer lecture notes 20 (1960)
[12] DOI: 10.2307/1970720 · Zbl 0169.23302
[13] Hartshorne R., Springer lecture notes 156 (1970)
[14] Hironaka H., Proc. Int. Cong. Math. pp 507– (1962)
[15] Hochster M., Properties of noetherian rings stable under general grade reduction · Zbl 0268.13013
[16] DOI: 10.1007/BF01589225 · Zbl 0123.03401
[17] Ogus A., Local cohomological dimension of algebraic varieties · Zbl 0308.14003
[18] Serre J.-P., Sur les modules projectifs, Sém (1960)
[19] Szpiro L., Variétés de codimension 2 dans \(\mathbb{P}\)n, Colloque d’Algèbre de Rennes (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.