Emsalem, Jacques Projectivité des schémas en courbes sur un anneau de valuation discrète. (French) Zbl 0286.14008 Bull. Soc. Math. Fr. 101, 255-263 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents MSC: 14H10 Families, moduli of curves (algebraic) 14C20 Divisors, linear systems, invertible sheaves 14A15 Schemes and morphisms PDF BibTeX XML Cite \textit{J. Emsalem}, Bull. Soc. Math. Fr. 101, 255--263 (1973; Zbl 0286.14008) Full Text: DOI Numdam EuDML References: [1] GOODMAN (J. E.) . - Affine open subsets of algebraic varieties and ample divisors , Annals of Math., t. 89, 1969 , p. 160-183. MR 39 #4170 | Zbl 0159.50504 · Zbl 0159.50504 [2] GROTHENDIECK (A.) et DIEUDONNÉ (J.) . - Éléments de géométrie algébrique . - Paris, Presses universitaires de France (Institut des Hautes Études Scientifiques. Publications mathématiques). Numdam · Zbl 0203.23301 [3] GROTHENDIECK (A.) . - Séminaire de géométrie algébrique (SGA 2) : Cohomologie locale des faisceaux cohérents et théorème de Lefschetz locaux et globaux . - Amsterdam, North-Holland publishing Company ; Paris, Masson, 1968 (Avanced Studies in pure Mathematics, 2). Zbl 0197.47202 · Zbl 0197.47202 [4] HARTSHORNE (ROBIN) . - Ample subvarieties of algebraic varieties . - Berlin, Springer-Verlag, 1970 (Lectures Notes in Mathematics, 156). Zbl 0208.48901 · Zbl 0208.48901 [5] LICHTENBAUM (S.) . - Curves over discrete valuation rings , Amer. J. of Math., t. 90, 1968 , p. 380-405. MR 37 #6284 | Zbl 0194.22101 · Zbl 0194.22101 [6] MARTIN (MIREILLE) . - Étude des ouverts affines d’un schéma Proj R , C. R. Acad. Sc. Paris, t. 275, série A, 1972 , p. 197-199. Zbl 0266.14004 · Zbl 0266.14004 [7] ŠAFAREVIČ (I. R.) . - Lectures on minimal models and birational transformations of two dimensional schemes . - Bombay, Tata Institute, 1966 (Tata Institute of fundamental Research. Lectures on Mathematics, 37). Zbl 0164.51704 · Zbl 0164.51704 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.