×

zbMATH — the first resource for mathematics

A separable somewhat reflexive Banach space with nonseparable dual. (English) Zbl 0286.46018

MSC:
46B10 Duality and reflexivity in normed linear and Banach spaces
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932. · JFM 58.0420.01
[2] C. Bessaga and A. Pełczyński, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165 – 174. · Zbl 0084.10001
[3] William J. Davis and Ivan Singer, Boundedly complete \?-bases and complemented subspaces in Banach spaces, Trans. Amer. Math. Soc. 175 (1973), 187 – 194. · Zbl 0256.46027
[4] James Hagler, Some more Banach spaces which contain \?\textonesuperior , Studia Math. 46 (1973), 35 – 42. · Zbl 0251.46023
[5] J. Hagler, Embeddings of L, Ph.D. thesis (U.C.B.), 1972. · Zbl 0223.46025
[6] Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518 – 527. · Zbl 0039.12202
[7] Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542 – 550. · Zbl 0132.08902
[8] W. B. Johnson and H. P. Rosenthal, On \?*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77 – 92. · Zbl 0213.39301
[9] Joram Lindenstrauss, Some aspects of the theory of Banach spaces, Advances in Math. 5 (1970), 159 – 180 (1970). · Zbl 0203.12002
[10] C. Stegall, Banach spaces whose duals contain l, Trans. Amer. Math. Soc. 176 (1973), 463-477. · Zbl 0259.46016
[11] Charles Stegall, The Radon-Nikodým property in conjugate Banach spaces. II, Trans. Amer. Math. Soc. 264 (1981), no. 2, 507 – 519. · Zbl 0475.46016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.