La conjecture de Weil. I. (French) Zbl 0287.14001


14G99 Arithmetic problems in algebraic geometry; Diophantine geometry
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry
14Fxx (Co)homology theory in algebraic geometry
Full Text: DOI Numdam EuDML


[1] A. Grothendieck, Formule de Lefschetz et rationalité des fonctions L,Séminaire Bourbaki, 279, décembre 1964 (Benjamin).
[2] S. Lefschetz,L’analysis situs et la géométrie algébrique (Gauthier-Villars), 1924. Reproduit dans :Selected papers (Chelsea Publ. Co.).
[3] R. A. Rankin, Contributions to the theory of Ramanujan’s function {\(\tau\)}(n) and similar arithmetical functions. II,Proc. Camb. Phil. Soc.,35 (1939), 351–372. · Zbl 0021.39202 · doi:10.1017/S0305004100021095
[4] A. Weil, Numbers of solutions of equations in finite fields,Bull. Am. Math. Soc.,55 (1949), p. 497–508. SGA,Séminaire de Géométrie Algébrique du Bois-Marie (IHES): SGA 4, Théorie des topos et cohomologie étale des schémas (dirigé parM. Artin, A. Grothendieck etJ.-L. Verdier),Lecture Notes in Math., 269, 270, 305. SGA 5,Cohomologie l-adique et fonctions L, diffusé par l’IHES. SGA 7, Groupes de monodromie en géométrie algébrique. 1re partie: dirigé parA. Grothendieck,Lecture Notes in Math., 288. 2e partie : parP. Deligne etN. Katz,Lecture Notes in Math., 340. · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.