Quasi-bounded and singular functions. (English) Zbl 0287.31008


31C05 Harmonic, subharmonic, superharmonic functions on other spaces
Full Text: DOI


[1] Maynard G. Arsove, The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184 – 194. · Zbl 0168.09503
[2] Maynard Arsove and Heinz Leutwiler, Painlevé’s theorem and the Phragmén-Lindelöf maximum principle, Math. Z. 122 (1971), 227 – 236. · Zbl 0231.31007
[3] M. Brelot, Éléments de la théorie classique du potentiel, Les Cours de Sorbonne. 3e cycle, Centre de Documentation Universitaire, Paris, 1959 (French). · Zbl 0084.30903
[4] Marcel Brelot, La topologie fine en théorie du potentiel, Symposium on Probability Methods in Analysis (Loutraki, 1966) Springer, Berlin, 1967, pp. 36 – 47 (French).
[5] Maurice Heins, Hardy classes on Riemann surfaces, Lecture Notes in Mathematics, No. 98, Springer-Verlag, Berlin-New York, 1969. · Zbl 0176.03001
[6] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney, 1969. · Zbl 0188.17203
[7] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier Grenoble 3 (1951), 103 – 197 (1952) (French). · Zbl 0047.32004
[8] Shinji Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J. 31 (1968), 57 – 68. · Zbl 0158.32502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.