×

zbMATH — the first resource for mathematics

Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups. (English) Zbl 0288.13004

MSC:
13C10 Projective and free modules and ideals in commutative rings
15A72 Vector and tensor algebra, theory of invariants
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625 – 657. · Zbl 0092.03902 · doi:10.2307/1970159 · doi.org
[2] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0186.33201
[3] David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197 – 224. · Zbl 0131.27802
[4] Wei Liang Chow, On unmixedness theorem, Amer. J. Math. 86 (1964), 799 – 822. · Zbl 0146.17203 · doi:10.2307/2373158 · doi.org
[5] J. A. Eagon, Ideals generated by the subdeterminants of a matrix, Thesis, University of Chicago, Chicago, Ill., 1961.
[6] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them., Proc. Roy. Soc. Ser. A 269 (1962), 188 – 204. · Zbl 0106.25603
[7] J. A. Eagon and D. G. Northcott, Generically acyclic complexes and generically perfect ideals, Proc. Roy. Soc. Ser. A 299 (1967), 147 – 172. · Zbl 0225.13004
[8] John Fogarty, Invariant theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0686.14014
[9] M. Hochster, Generically perfect modules are strongly generically perfect, Proc. London Math. Soc. (3) 23 (1971), 477 – 488. · Zbl 0232.13014
[10] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318 – 337. · Zbl 0233.14010 · doi:10.2307/1970791 · doi.org
[11] M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020 – 1058. · Zbl 0244.13012 · doi:10.2307/2373744 · doi.org
[12] Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. · Zbl 0238.16001
[13] F. S. Macaulay, The algebraic theory of modular systems, Cambridge Tracts 19 (1916). · JFM 46.0167.01
[14] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. · Zbl 0123.03402
[15] D. W. Sharpe, On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 15 (1964), 155 – 175. · Zbl 0119.03601 · doi:10.1093/qmath/15.1.155 · doi.org
[16] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
[17] O. Zariski and P. Samuel, Commutative algebra. Vols. I, II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958, 1960. MR 19, 833; 22 #11006. · Zbl 0121.27901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.