×

zbMATH — the first resource for mathematics

Intersection matrices for certain singularities. (English. Russian original) Zbl 0288.32011
Funct. Anal. Appl. 7, 182-193 (1974); translation from Funkts. Anal. Prilozh. 7, No. 3, 18-32 (1973).

MSC:
32Sxx Complex singularities
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
57R45 Singularities of differentiable mappings in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton (1968). · Zbl 0184.48405
[2] V. I. Arnol’d, ”Normal forms of functions near degenerate critical points,” Funktional’. Analiz i Ego Prilozhen.,6, No. 4, 3-25 (1972).
[3] E. Brieskorn, ”The monodromy of isolated singularities of hypersurfaces,” Matematika,15, No. 4, 130-160 (1971).
[4] M. Sebastiani and R. Thom, ”Un résultat sur la monodromie,” Invent. Math.,13, Nos. 1-2, 90-96 (1971). · Zbl 0233.32025 · doi:10.1007/BF01390095
[5] F. Pham, Introduction to the Topological Investigation of Landau Singularities [Russian translation], Mir, Moscow (1970).
[6] F. Pham, ”Generalized Picard?Lefschetz formulas,” Matematika,13, No. 4, 61-93 (1969).
[7] N. Bourbaki, Lie Groups and Lie Algebras [Russian translation], Mir, Moscow (1972). · Zbl 0249.22001
[8] Lê D?ng Tráng, Les Théorémes de Zarisky de Type de Lefschetz, Centre de Math. de l’Ecole Polytechnique, Paris (1971).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.