×

Optimal control of a linear discrete system. (English) Zbl 0288.49019

MSC:

49L99 Hamilton-Jacobi theories
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Athans M., Falb L. P.: Optimal control. McGraw Hill, N. York 1966. · Zbl 0196.46303
[2] Kalman R. E., Falb P. L., Arbib M. A.: Topics in mathematical system theory. McGraw Hill, N. York 1969. · Zbl 0231.49001
[3] Desoer Ch. A., Zadeh L. A.: Linear system theory. McGraw Hill, N. York 1963. · Zbl 1145.93303
[4] Athans M., Levine W.: On the design of linear system using only output variable feedback. Proc. 6th Allerton Conf. Circuit and system theory 1969, 661-670.
[5] Athans M., Johnson T.: On the determination of the optimal constrained dynamic compensator for linear constant system. IEEE Tran. on Automatic Control AC-15 (1970), 6, 658-660.
[6] Mitter S. K., Foulkes R.: Controllability and pole assigment for discrete time linear systems defined over arbitrary fields. SIAM Journal of control 9 (1971), 1, 1-8. · Zbl 0221.93001
[7] Tse Edison: Optimal minimal order observer estimators for discrete linear time varying systems. IEEE Tran. on Automatic Control AC-15 (1970), 4, 416-426.
[8] Dorato P., Levis A. H.: Optimal linear regulator: The discrete time case. IEEE Tran. on Automatic Control AC-16 (1971), 6, 613-620.
[9] Kozáčiková A.: Algorithms for solution of linear discrete systems with incomplete information about the state of the system. Thesis, ČVUT, Praha 1972.
[10] Hewer G. A.: An iterative technique for the computation of the steady-state gains for the discrete optimal regulator. IEEE Tran. on Automatic Control AC-16 (1971), 4, 382-383.
[11] Štecha J., Kozáčiková A., Kozáčik J.: Solution of matrix equations \(PA + A^{T} P = -Q\) and \(M^{T}PM - P = -Q\) resulting in Lyapunov stability analysis. Kybernetika 9 (1973), 1, 62-71.
[12] Kozáčik J.: Algorithms for solution of linear continuous systems with incomplete information about the state of the system. Thesis, ČVUT, Praha 1972.
[13] Fink M., Štecha J.: Synthesis of linear dynamic systems with incomplete information about the state. Kybernetika 7 (1971), 6, 467-491. · Zbl 0266.49020
[14] Bjerhmmar A.: A generalized matrix algebra. Bulletin No. 9 from the Division of geodesy, Stockholm 1958.
[15] Понтрягин В. С.: Математическая теория оптимальных процессов. Физматизд, Москва 1961. · Zbl 1160.68305
[16] Athans M., Levine W. S.: On the determination of the optimal constant output feedback gains for linear multivariate systems. IEEE Tran. on Automatic Control AC-15 (1970), 1, 44-48.
[17] Athans M.: The matrix minimum principle. Information and Control 11 (1967), 6, 592-606. · Zbl 0176.07301
[18] Athans M., Levine W. S., Johnson T.: Optimal limited state variable feedback controlers for linear systems. IEEE Tran. on Automatic Control AC-16 (1971), 6, 785-793.
[19] Bellman R.: Dynamic programming. Princeton University Press, Princeton 1957. · Zbl 0995.90618
[20] Liang-Tseng Fan, Chin-Sen Wang: The discrete maximum principle. John Wiley, N. York 1964.
[21] Lidický J.: Optimal discrete control of linear continuous systems. Thesis, ČVUT, Praha 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.