Analyse numérique du champ magnetique d’un alternateur par éléments finis et sur-relaxation ponctuelle non linéaire. (French) Zbl 0288.65068


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Z05 Applications to the sciences
65H10 Numerical computation of solutions to systems of equations
Full Text: DOI


[1] Silvester, P.; Chari, M. V.K., Analysis of turboalternator magnetic fields by finite elements, IEEE, P.S.A., 90, No. 2, 454-464 (March-Apr. 1971)
[2] Silvester, P.; Chari, M. V.K., Finite element analysis of magnetically saturated D.C. machines, IEEE P.A.S., 2362-2372 (Sept-Oct. 1971)
[3] Lions, J. L., Controle optimal de systemes gouvernes par des equations aux derives partielles (1968), Dunod: Dunod Paris · Zbl 0179.41801
[4] Cea, J., Optimisation (1971), Dunod: Dunod Paris · Zbl 0211.17402
[5] Argyris, J. H.; Mareczek, G.; Sharpf, D. W., Two and three dimensional flow using finite elements, Aeronautical Journal, 961-964 (1969)
[6] Argyris, J. H.; Mareczek, G., Potential flow analysis by finite elements, Ingenieur-Archiv, 41, 1-25 (1972) · Zbl 0251.76009
[7] Fix, G.; Strang, G., An analysis of the finite element method (1973), Prentice Hall · Zbl 0278.65116
[8] Ciarlet, P.; Raviart, P. A., General Lagrange and Hermite interpolation in \(R^n\) with application to finite element method, Arch. Rat. Mech. Anal., 46, 177-199 (1972) · Zbl 0243.41004
[9] Argyris, J. H.; Fried, I., The LUMINA element for the matrix-displacement method (Lagrangian interpolation), The Aeronautical Journal of the Royal Aeronautical Society, 72, 514-517 (1968)
[10] Argyris, J. H.; Scharpf, D. W., “The HERMES 8 element for the matrix-displacement method,” (Hermitian interpolation), The Aeronautical Journal of the Royal Aeronautical Society, 72, 613-617 (1968)
[11] Kagur, J.; Necas, J.; Polak, J.; Soucek, J., Convergence of a method for solving the magnetostatic field in non linear media, Applikace Matematiky, Svozek, 13 (1968) · Zbl 0187.11903
[12] Erdely, E. A.; Fuchs, E. F., Non linear field analysis of D.C. machines, IEEE, P.A.S., 80, No. 7, 1546-1583 (Sept.-Oct. 1970)
[13] Winslow, A. M., Numerical solution of the quasi-linear Poisson equation in a non uniform triangle mesh, Journal of Computational Physic, 2, 149-172 (1967) · Zbl 0254.65069
[14] Concus, P., Numerical solution of the non-linear magnetostatic field equation in two-dimension, J. of Computational Physics, 1, 330-342 (1967) · Zbl 0154.41103
[15] Schechter, S., Iteration method for non linear problems, Trans. A.M.S., 104, 179-189 (1962) · Zbl 0106.31801
[16] S. Schechter, “Relaxation methods for convex problems,” SIAM J. on Numerical Analysis 5, pp. 601-612.; S. Schechter, “Relaxation methods for convex problems,” SIAM J. on Numerical Analysis 5, pp. 601-612. · Zbl 0179.22701
[17] Schechter, S., Minimisation of convex function by relaxation, (Abadie, J., Integer and non linear programming (1970), North-Holland), 177-189, Ch. 7 · Zbl 0346.90037
[18] Glowinski, R., La methode de Relaxation, Quaderni dei rendiconti di matematica, 14 (1972), Roma
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.