zbMATH — the first resource for mathematics

Kuhn-Tucker-Theorie für Funktionen mit Richtungsableitungen. (German) Zbl 0288.90065
90C25 Convex programming
90C30 Nonlinear programming
Full Text: EuDML
[1] ABADIE J.: On the Kuhn-Tucker-Theorem. Abadie, J, (ed.): Nonlinear programming, Amsterdam 1967, 20-36 · Zbl 0183.22803
[2] BERGE C., GHOUILA-HOURI A.: Programme, Spiele, Transportnetze. Leipzig 1967. · Zbl 0183.23905
[3] BRAM J.: The Lagrange multiplier theorem for max-min with several constraints. J. SIAM appl. Math. 14, Nr. 4, 1966, 665-667. · Zbl 0144.42803
[4] DANSKIN J. M.: The theory of max-min with applications. J. SIAM appl. Math, 14, Nr. 4, 1966, 641-664. · Zbl 0144.43301
[5] ELSTER K. H., GÖTZ R.: Über die Constraint Qualification und damit \?erwandte Bedingungen. Wiss. Z. TH Ilmenau 15, 1969, 27-35. · Zbl 0191.48704
[6] JOHN F.: Extremum problems with inequalities as subsidiary conditions. Courant anniversary volume, New York 1948. · Zbl 0034.10503
[7] KARLIN S.: Mathematical methods and theory in games, prgramming, and economics. Band I, New York 1959.
[8] KUHN H. W., TUCKER A. W.: Nonlinear Programming. Aus: Neyman, J. (ed.): Proceedings of the Second Berkeley Symp. on Math. Statist. and Probabil., Berkeley, Calif. 1951, 482-492. · Zbl 0044.05903
[9] MAGEROD J.: Über eine Verallgemeinerung des Satzes von Kuhn und Tucker. Wiss. Z. TH Ilmenau, 17, 1971, 19-30. · Zbl 0229.90039
[10] SLATER M. L.: Lagrange multipliers revisited. Cowles Commission Discussion Paper, Math. 403, 1950.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.