×

The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces. (English) Zbl 0289.14003


MSC:

14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14G15 Finite ground fields in algebraic geometry
14J25 Special surfaces
32J15 Compact complex surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Artin, M., Grothendieck, A., Verdier, J.-L.: Séminaire de géométrie algébrique ?Cohomologie étale des schémas. Inst. Hautes Études Sci. (1963-4). Lecture Notes in Mathematics305. Berlin-Heidelberg-New York: Springer 1973.
[2] Artin, M.: Algebraic construction of Brieskorn’s resolution. (To appear.) · Zbl 0292.14013
[3] Atiyah, M.F., Singer, I.M.: The index of elliptic operators IV. Annals of Math.93, 119-138 (1971). · Zbl 0212.28603
[4] Borel, A.: Arithmetic properties of linear algebraic graphs. Proc. Int. Congr. Math., 1962. Uppsala: Almqvist & Wiksells 1963. · Zbl 0107.14804
[5] Brieskorn, E.: Singular elements of semi-simple algebraic groups. Proc. Int. Congr. Nice, 1970. Paris: Gauthier-Villars 1971. · Zbl 0223.22012
[6] Deligne, P.: La conjecture de Weil pour les surfacesK 3. Inventiones mat.15, 206-226 (1972). · Zbl 0219.14022
[7] Enriques, F.: Le superficie algebriche. Zannichelli: Bologna 1949. · Zbl 0036.37102
[8] Grothendieck, A.: Techniques de descente et théorèmes d’existence en géométrie algébrique V. Séminaire Bourbaki 13 (1960-61) exposé 232 (mimeographed notes).
[9] Grothendieck, A.: Le groupe de Brauer III. Dix exposés sur la cohomologie des schémas. North-Holland: Amsterdam 1968.
[10] Kodaira, K.: On compact analytic surfaces. Analytic Functions. pp. 121-135. Princeton 1960. · Zbl 0137.17401
[11] Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures III. Annals of Math.71, 43-76 (1960). · Zbl 0128.16902
[12] Milne, J.S.: The Tate-Safarevic group of a constant abelian variety. Inventiones math.6, 91-105 (1968). · Zbl 0159.22402
[13] Milne, J.S.: The Brauer group of a rational surface. (To appear.) · Zbl 0205.25101
[14] Néron, A.: Modeles mininaux des variétés abéliennes sur les corps locaux et globaux. Pub. Math. Inst. Hautes Études Sci.21 (1964).
[15] Tate, J.: Algebraic cycles and poles of zeta functions. Arithmetical algebraic geometry. pp. 93-110. Harper and Row: New York 1965. · Zbl 0213.22804
[16] Tate, J.: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki 1965-66, exposé 306 (mimeographed notes).
[17] Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones math.2, 134-144 (1966). · Zbl 0147.20303
[18] Whitehead, J.H.C.: A certain exact sequence. Annals of Math.52, 51-110 (1950). · Zbl 0037.26101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.