×

zbMATH — the first resource for mathematics

6-valent analogues of Eberhard’s theorem. (English) Zbl 0291.05102

MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Barnette, E. Jucovič, and M. Trenkler,Toroidal maps with prescribed types of vertices and faces, Mathematika18 (1971), 82–90. · Zbl 0222.05102
[2] G. Brunel,Sur quelques configurations polyédrales, Procès-Verbaux Séances Soc. Sci. Phys. et Mat. Bordeaux (1897–98), 20.
[3] V. Eberhard,Zur Morphologie der Polyeder, Teubner, Leipzig, 1891.
[4] B. Grünbaum,Convex Polytopes, J. Wiley, New York, 1967.
[5] B. Grünbaum,Some analogues of Eberhard’s theorem on convex polytopes, Israel J. Math.6 (1968), 398–411. · Zbl 0174.53702
[6] B. Grünbaum,Planar maps with prescribed types of vertices and faces, Mathematika16 (1969), 28–36. · Zbl 0186.27502
[7] B. Grünbaum,Polytopes, graphs and complexes, Bull. Amer. Math. Soc.76 (1970), 1131–1201. · Zbl 0211.25001
[8] B. Grünbaum and J. Zaks,The existence of certain planar maps, to appear. · Zbl 0298.05112
[9] S. Jendroľ and E. Jucovič,On the toroidal analogue of Eberhard’s theorem, Proc. London Math. Soc. (25)3 (1972), 385–398. · Zbl 0239.05107
[10] J. Malkevitch,Properties of planar graphs with uniform vertex and face structure, Ph.D. thesis, University of Wisconsin, Madison, 1969. · Zbl 0196.27203
[11] O. Ore,The four-color Problem, Academic Press, New York, 1967. · Zbl 0149.21101
[12] D. A. Rowland,An extension of Eberhard’s theorem, M. Sc. thesis, University of Washington, Seattle, 1968.
[13] J. Zaks,The analogue of Eberhard’s theorem for 4-valent graphs on the torus, Israel J. Math.9 (1971), 299–305. · Zbl 0222.05103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.