×

zbMATH — the first resource for mathematics

Fonctions \(k\)-lipschitziennes sur un anneau local et polynômes à valeurs entières. (French) Zbl 0291.12107

MSC:
12J20 General valuation theory for fields
13H99 Local rings and semilocal rings
46J10 Banach algebras of continuous functions, function algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] AMICE (Y.) . - Interpolation p-adique , Bull. Soc. math. France, t. 92, 1964 , p. 117-180 (Thèse Sc. math. Paris, 1964 ). Numdam | MR 32 #5638 | Zbl 0158.30201 · Zbl 0158.30203 · numdam:BSMF_1964__92__117_0 · eudml:87047
[2] BARSKY (D.) . - Polynômes dont les dérivées sont à valeurs entières et fonctions k-lipschitziennes sur un anneau local , Thèse 3e cycle, Math., Univ. Paris-VII, 1972 .
[3] BOURBAKI (N.) . - Algèbre , chap. 7, 2e édition. - Paris, Hermann, 1964 (Act. scient. et ind., 1179 ; Bourbaki, 14). Zbl 0115.03102 · Zbl 0115.03102
[4] BOURBAKI (N.) . - Algèbre commutative, Chap. 7 . - Paris, Hermann, 1965 (Act. scient. et ind., 1314 ; Bourbaki, 31). Zbl 0141.03501 · Zbl 0141.03501
[5] CARLITZ (L.) . - A note on integral-valued polynomials , Koninkl. nederl. Akad. Wetensch., Proc., séries A, t. 62, 1959 , p. 294-299. MR 21 #7178 | Zbl 0100.27102 · Zbl 0100.27102
[6] HELSMOORTEL (E.) . - Comportement local des fonctions continues sur un compact régulier d’un corps local , C. R. Acad. Sc. Paris, t. 271, série A, 1970 , p. 546-548. MR 42 #5953 | Zbl 0215.07503 · Zbl 0215.07503
[7] OSTROWSKI (A.) . - Ueber ganzwertige Polynome in algebraischen Zahlkörpen , J. für die reine und ang. Math., t. 149, 1919 , p. 117-124. JFM 47.0163.05 · JFM 47.0163.05
[8] POLYA (G.) . - Ueber ganzwertige Polynome in algebraischen Zahlkörpen , J. für die reine und ang. Math., t. 149, 1919 , p. 97-116. JFM 47.0163.04 · JFM 47.0163.05
[9] STRAUS (E. G.) . - On the polynomials whose derivatives have integral values at the integers , Proc. Amer. math. Soc., t. 2, 1951 , p. 24-27. MR 12,700c | Zbl 0043.04205 · Zbl 0043.04205 · doi:10.2307/2032614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.