×

zbMATH — the first resource for mathematics

Absolutely summing operators and local unconditional structures. (English) Zbl 0291.47017

MSC:
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
47L05 Linear spaces of operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cohen, J.,Absolutely p-summing, p-nuclear operators and their conjugates. Dissertation, University of Maryland, 1969.
[2] Enflo, P. & Rosenthal, H. P., Some results concerningL p (\(\mu\))-spaces. To appear.
[3] Figà-Talamanca, A. &Rider, D., A theorem of Littlewood and lacunary series for compact maps.Pac. J. Math., 16 (1966), 505–514. · Zbl 0142.10501
[4] Garling, D. J. H. &Gordon, Y., Relations between some constants associated with finite-dimensional Banach spaces.Israel J. Math., 9 (1971), 346–361. · Zbl 0212.14203 · doi:10.1007/BF02771685
[5] Gordon, Y., Onp-absolutely summing constants of Banach spaces.Israel J. Math., 7 (1969), 151–163. · Zbl 0179.17502 · doi:10.1007/BF02771662
[6] –, Asymmetry and projection constants.Israel J. Math., 14 (1973), 50–62. · Zbl 0253.46024 · doi:10.1007/BF02761534
[7] Gordon, Y., Lewis, D. R. &Retherford, J. R., Banach ideals of operators with applications.J. Funct. Anal., 14 (1973), 85–128. · Zbl 0272.47024 · doi:10.1016/0022-1236(73)90031-1
[8] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques.Bol. Soc. Mat. Sao Paulo, 8 (1956), 1–79.
[9] –, Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers.Bol. Soc. Mat. Sao Paulo, 8 (1956), 83–110.
[10] –, Produits tensoriels topologiques et espaces nucléaires.Mem. Amer. Math. Soc., 16 (1966), 719–722.
[11] Gurarii, V. I., Kadec, M. I. &Macaev, V. I., On Banach-Mazur distance between certain Minkowsky spaces.Bull. Acad. Polo. Sci. Sér. Sci. Math. Astron. Phys., 13 (1965), 719–722.
[12] –, Dependence of certain properties of Minkowsky spaces on asymmetry (Russian).Mat. Sb., 71 (113) (1966), 24–29.
[13] Kadec, M. I., On linear dimension of the spacesL p (Russian).Upsehi Mat. Nauk, 13 (1958), 95–98.
[14] Kadec, M. I. &Snobar, M. G., Certain functionals on the Minkowsky compactum (Russian).Mat. Zametki, 10 (1971), 453–457, [English translation-Math. Notes 10 (1971), 694–696].
[15] Kwapien, S. &Pelczynski, A., The main triangle projection in matrix spaces and its applications.Studia Math. 34 (1970), 43–68. · Zbl 0189.43505
[16] Kwapien, S., On operators factorizable throughL p -spaces. To appear. · Zbl 0246.47040
[17] Lewis, D., Integral operators onL p-spaces.Pac. J. Math., (in print).
[18] Lindenstrauss, J. &Pelczynski, A., Absolutely summing operators inL p-spaces and their applications.Studia Math., 29 (1968), 275–326. · Zbl 0183.40501
[19] Lindenstrauss, J. &Zippin, M., Banach spaces with sufficiently many Boolean algebras of projections.J. Math. Anal. Appl., 25 (1969), 309–320. · Zbl 0174.17103 · doi:10.1016/0022-247X(69)90234-0
[20] McCarthy, C. A.,c p ,Israel J. Math., 5 (1967), 249–271. · Zbl 0156.37902 · doi:10.1007/BF02771613
[21] Persson, A. &Pietsch, A.,p-nukleare undp-integrale Abbildungen in Banachräumen.Studia Math., 33 (1969), 19–62. · Zbl 0189.43602
[22] Pietsch, A., Absolutp-summierende Abbildungen in normierten Räumen.Studia Math., 28 (1967), 333–353. · Zbl 0156.37903
[23] –, Adjungierte normierte Operatorenideale.Math. Nach., 48 (1971), 189–211. · Zbl 0233.46084 · doi:10.1002/mana.19710480114
[24] Stegall, C. &Retherford, J. R., Fully nuclear and completely nuclear operators with applications toL p- andL spaces.Trans. Amer. Math. Soc., 163 (1972), 457–492. · Zbl 0205.43003
[25] Tomczak-Jaegerman, N., The moduli of smoothness and convexity and the Rademacher averages of trace classesS p , 1< To appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.