The ordering of experimental designs. A Hilbert space approach. (English) Zbl 0291.62105


62K99 Design of statistical experiments
62M99 Inference from stochastic processes
46Cxx Inner product spaces and their generalizations, Hilbert spaces
60G99 Stochastic processes
Full Text: EuDML


[1] Aronszajn N.: Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. · Zbl 0037.20701
[2] Atwood C. L.: Sequences Converging to D-optimal Designs of Experiments. Ann. of Statist. 1 (1973), 2, 342-352. · Zbl 0263.62047
[3] Halmos P. R.: Introduction to Hilbert Space. Chelsea Publ. Comp., New York 1957. · Zbl 0079.12404
[4] Kiefer J., Wolfowitz J.: Optimum Designs in Regression Problems. Ann. Math. Statist. 30 (1959), 271-294. · Zbl 0090.11404
[5] Kullback S.: Information Theory and Statistics. Wiley, New York 1959. · Zbl 0088.10406
[6] Линник Ю. В.: Метод наименьших квадратов и основы математикостатистической теории обработки наблюдений. Москва 1962. · Zbl 1226.30001
[7] Parzen E.: Regression Analysis of Continuous Parameter Time Series. Fourth Berkeley Symp. on Math. Statist, 1961, 469-490. · Zbl 0107.13802
[8] Pázman A., Serejová D.: Sekvenčné navrhovanie optimálnych experimentov. Report, Bratislava 1972.
[9] Pázman A.: Sequential Designs for Estimating s out of k Parameters. Acta metronomica 8 (1972), 4, Inst. for Measurement Theory, Bratislava. Also: A Convergence Theorem in the Theory of D-optimum Designs. Ann. of Statist. 2 (1974), 1, 216-218.
[10] Stone M.: Application of a Measure of Information to the Design and Comparison of Regression Experiments. Ann. Math. Statist. 30 (1959), 55-70. · Zbl 0094.13602
[11] Wynn H. P.: Results in the Theory and Construction of D-optimum Experimental Designs. J. Roy. Stat. Soc. B 34 (1972), 133-147. · Zbl 0248.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.