×

The modified equation approach to the stability and accuracy analysis of finite-difference methods. (English) Zbl 0291.65023


MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), John Wiley & Sons: John Wiley & Sons New York · Zbl 0155.47502
[2] Lomax, H.; Kutler, P.; Fuller, F. B., The numerical solution of partial differential equations governing convection, AGARDograph No. 146 (1970)
[3] Hirt, C. W., J. Computational Phys., 2, 339 (1968)
[4] Tyler, L. D., (Holt, M., Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics (1971), Springer-Verlag: Springer-Verlag Berlin), 314
[5] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa Publishers: Hermosa Publishers Albuquerque · Zbl 0251.76002
[6] Fike, C. T., PL/1 for Scientific Programmers (1970), Prentice Hall: Prentice Hall Englewood Cliffs
[7] Roberts, K. V.; Weiss, N. O., Math. Comp., 20, 272 (1966)
[8] Rusanov, V. V., J. Computational Phys., 5, 507 (1970)
[9] Burstein, S. Z.; Mirin, A. A., J. Computational Phys., 5, 547 (1970)
[10] Morton, K. W., (Proc. Roy. Soc. London A, 323 (1971)), 237
[11] Fromm, J. E., J. Computational Phys., 3, 176 (1968)
[12] Warming, R. F.; Kutler, P.; Lomax, H., AIAA J., 11, 189 (1973)
[13] Kutler, P.; Warming, R. F.; Lomax, H., AIAA J., 11, 196 (1973)
[14] Taylor, T. D.; Ndefo, E.; Masson, B. S., J. Computational Phys., 9, 99 (1972)
[15] Crowley, W. P., J. Computational Phys., 1, 471 (1967)
[16] Lerat, A.; Peyret, R., C. R. Acad. Sci. Paris, 276, 759 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.