Osius, Gerhard Kategorielle Mengenlehre: Eine Charakterisierung der Kategorie der Klassen und Abbildungen. (German) Zbl 0292.02050 Math. Ann. 210, 171-196 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 03E30 Axiomatics of classical set theory and its fragments 18A15 Foundations, relations to logic and deductive systems 18B05 Categories of sets, characterizations × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Bernays, P.: A system of axiomatic set theory I?VII. J. Symb. Logic2, 65-77 (1937),6, 1-7 (1941),7, 65-89 (1942),7, 133-145 (1942),8, 89-106 (1943),13, 65-79 (1948),19, 81-96 (1954) · Zbl 0019.29403 · doi:10.2307/2268862 [2] Cole, J. C.: Categories of sets and models of set theory. Ph.D.-Thesis, University of Sussex (England), Brighton 1972 [3] Gödel, K.: The consistency of the axioms of choice and of the generalized continuumhypothesis with the axioms of set theory. Princeton: Princeton University Press 1940 [4] Gray, J. W.: The meeting of the Midwest Category Seminar in Zürich. In: Reports of the Midwest Category Seminar V. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0222.18001 [5] Lawvere, F. W.: An elementary theory of the category of sets. Proc. Nat. Acad. Sciences52, 1506-1511 (1964) · Zbl 0141.00603 · doi:10.1073/pnas.52.6.1506 [6] Lawvere, F. W.: The category of categories as a foundation for mathematics. In: Proceedings on the conference on categorical algebra (La Jolla 1965). Berlin-Heidelberg-New York: Springer 1966 · Zbl 0158.26401 [7] Lawvere, F. W., Tierney, M.: Elementary topos. Lectures at the Midwest-Category Seminar in Zürich, August 1970. Zusammengefaßt in [4] [8] Mitchell, W.: Boolean topoi and the theory of sets. J. Pure Appl. Algebra2, 261-274 (1972) · Zbl 0245.18001 · doi:10.1016/0022-4049(72)90006-0 [9] Osius, G.: Categorical set theory: A characterization of the category of sets. J. Pure Appl. Algebra4, 79-119 (1974) · Zbl 0282.02027 · doi:10.1016/0022-4049(74)90032-2 [10] Pumplün, D.: Kategorien I, Vorlesungsausarbeitung. Math. Inst. Universität Münster, 1972 [11] Rubin, J.: Set theory for the mathematician. San Francisco-Cambridge-London-Amsterdam: Holden Day 1967 · Zbl 0183.01301 [12] Schubert, H.: Kategorien I, II. Berlin-Heidelberg-New York: Springer 1970 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.