×

zbMATH — the first resource for mathematics

Products of sequential spaces. (English) Zbl 0292.54025

MSC:
54D55 Sequential spaces
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
54B10 Product spaces in general topology
54D50 \(k\)-spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. V. Arhangel\(^{\prime}\)skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115 – 162. · Zbl 0171.43603 · doi:10.1070/RM1966v021n04ABEH004169 · doi.org
[2] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107 – 115. · Zbl 0132.17802
[3] S. P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51 – 56. · Zbl 0168.43502
[4] Louis F. McAuley, A relation between perfect separability, completeness, and normality in semi-metric spaces, Pacific J. Math. 6 (1956), 315 – 326. · Zbl 0072.17802
[5] E. Michael, ℵ\(_{0}\)-spaces, J. Math. Mech. 15 (1966), 983 – 1002. · Zbl 0148.16701
[6] E. A. Michael, A quintuple quotient quest, General Topology and Appl. 2 (1972), 91 – 138. · Zbl 0238.54009
[7] John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272 – 284. · Zbl 0071.17302 · doi:10.2307/1969609 · doi.org
[8] Kiiti Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad. 29 (1953), 537 – 543. · Zbl 0053.12405
[9] -, Some results on \( M\)-spaces, Colloq. Math. Societatis János Bolyai 8, Topics in Topology, Keszthely, Hungary, 1972, pp. 489-503.
[10] S. Nedev, Symmetrizable spaces and final compactness, Dokl. Akad. Nauk SSSR 175 (1967), 532 – 534 (Russian). · Zbl 0153.52701
[11] Roy C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, General Topology and Appl. 4 (1974), 1 – 28. · Zbl 0278.54008
[12] Frank Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971), no. 2, 143 – 154. · Zbl 0218.54016
[13] Yoshio Tanaka, On quasi-\?-spaces, Proc. Japan Acad. 46 (1970), 1074 – 1079. · Zbl 0224.54030
[14] Yoshio Tanaka, On symmetric spaces, Proc. Japan Acad. 49 (1973), 106 – 111. · Zbl 0267.54029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.