×

zbMATH — the first resource for mathematics

Random variables, joint distribution functions, and copulas. (English) Zbl 0292.60036

MSC:
60E05 Probability distributions: general theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] J. B. Brown: Random metrics for statistical metric spaces. Z. Wahrsch. 24 (1972), 49-62.
[2] P. Calabrese: A random variable approach to probabilistic metric spaces. To appear. · Zbl 0383.60012
[3] G. Dall’Aglio: Sulla compatibilità delle funzioni di ripartizione doppia. Rendiconti Mat. 18 (1959), 385-413. · Zbl 0091.30705
[4] W. Feller: An introduction to probability theory and its applications. Wiley, New York 1966. · Zbl 0138.10207
[5] R. Féron: Sur les tableaux de corrélation dont les marges sont données. Publ. Inst. Statistique Univ. Paris 5 (1956), 1-12. · Zbl 0074.14205
[6] M. J. Frank: Associativity of operators on spaces of distribution functions. Notices Amer. Math. Soc. 19 (1972), 1 A-143, Abstract 691-39-5. To appear in Aequat. Math.
[7] M. Fréchet: Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon 9 (1951), Sec. A, 53-77. · Zbl 0045.22905
[8] B. V. Gnedenko A. N. Kolmogorov: Limit distributions for sums of independent random variables. Addison-Wesley, Reading 1954. · Zbl 0056.36001
[9] J. Kampé de Fériet: Mesure de l’information fournie par un événement. Colloques Internat. C.N.R.S. No. 186, Clermont-Ferrand 1969. C.N.R.S., Paris 1970, 191-221.
[10] J. Kampé de Fériet: Mesures de l’information par un ensemble d’observateurs. C. R. Acad. Sci. Paris 269 (1969), Ser. A, 1081-1085; ibid. 271 (1971), Sér. A, 1017-1021. · Zbl 0195.49003
[11] J. Kampé de Fériet B. Forte: Information et probability. C. R. Acad. Sci. Paris 265 (1967), Sér. A, 110-114, 142-146, 350-353. · Zbl 0201.53002
[12] J. Kampé de Fériet B. Forte P. Benvenuti: Forme générate de l’opération de composition continue d’une information. C. R. Acad. Sci. Paris 269 (1969), Sér. A, 529-534. · Zbl 0212.23202
[13] C. H. Kimberling: A probabilistic interpretation of complete monotonicity. To appear. · Zbl 0309.60012 · doi:10.1007/BF01832852 · eudml:136409
[14] A. N. Kolmogorov: Foundations of the theory of probability. Second English edition. Chelsea, New York 1956. · Zbl 0074.12202
[15] C.-H. Ling: Representation of associative functions. Publicat. Math. Debrecen 12 (1965), 189-212. · Zbl 0137.26401
[16] Y. V. Linnik: Decompositions des lois de probabilités. Gauthier-Villars, Paris 1962. · Zbl 0103.11901
[17] K. Menger: Statistical metrics. Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[18] A. Nataf: Determination des distributions de probabilités dont les marges sont données. C. R. Acad. Sci. Paris 255 (1962), 42-43. · Zbl 0109.11904
[19] B. Schweizer: Probabilistic metric spaces - the first 25 years. New York Statistician 19 (1967), 2, 3-6.
[20] B. Schweizer A. Sklar: Associative functions and statistical triangle inequalities. Publicat. Math. Debrecen 8 (1961), 169-186. · Zbl 0107.12203
[21] B. Schweizer A. Sklar: A grammar of functions. Aequat. Math. 2 (1968), 62-85; ibid. 3 (1969), 15-43. · Zbl 0164.33502 · doi:10.1007/BF01833491 · eudml:182303
[22] B. Schweizer A. Sklar: Mesures aléatoires de l’information. C. R. Acad. Sci. Paris 269 (1969), Sér. A, 721-723. · Zbl 0186.53302
[23] B. Schweizer A. Sklar: Mesure aléatoire de l’information et mesure de l’information par un ensemble d’observateurs. C. R. Acad. Sci. Paris 272 (1971), Sér. A, 149-152. · Zbl 0211.51301
[24] A. N. Šerstnev: On the notion of a random normed space. Doklady Akad. Nauk S.S.S.R. 149 (1963), 280-283;
[25] A. N. Šerstnev: On probabilistic generalizations of metric spaces. Učen. Zap. Kazan. Gos. Univ. 124 (1964), 2, 3-11.
[26] A. Sklar: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statistique Univ. Paris 8 (1959), 229-231. · Zbl 0100.14202
[27] A. Špaček: Note on K. Menger’s probabilistic geometry. Czechoslovak Math. J. 6 (1956), 72-74. · Zbl 0075.13601 · eudml:11820
[28] A. Špaček: Random metric spaces. Transactions of the Second Prague Conference, Prague 1959. NČSAV, Praha and Academic Press, New York 1960, 627-628.
[29] E. Thorp: Best-possible triangle inequalities for statistical metric spaces. Proc. Amer. Math. Soc. 11 (1960), 734-740. · Zbl 0125.37002 · doi:10.2307/2034554
[30] D. V. Widder: The Laplace transform. Princeton Univ. Press, Princeton 1941. · Zbl 0063.08245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.