zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multipliers of a Banach algebra in the second conjugate algebra as an idealizer. (English) Zbl 0293.46037

MSC:
46H99Topological algebras, normed rings and algebras, Banach algebras
47C05Operators in topological algebras
WorldCat.org
Full Text: DOI
References:
[1] C. A. AKEMANN, G. K. PEDEKSEN AND J. TOMIYAMA, Multipliers of C*-algebras, J. Func-tional Analysis 13 (1973), 277-301. · Zbl 0258.46052 · doi:10.1016/0022-1236(73)90036-0
[2] R. C. BUSBY, Double centralizers and extension of C*-algebras, Trans. Amer. Math Soc, 132(1968), 79-99. · Zbl 0165.15501 · doi:10.2307/1994883
[3] P. CIVIN, Ideals in the second conjugate algebra of a group algebras, Math. Scand., 1 (1962), 161-174. · Zbl 0178.16603 · eudml:165825
[4] P. CIVIN AND B. YOOD, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math., 11 (1961), 847-870. · Zbl 0119.10903 · doi:10.2140/pjm.1961.11.847
[5] B. E. JOHNSON, An introduction to the theory of centralizers, Proc. London Math. Soc, 14 (1964), 299-320. · Zbl 0143.36102 · doi:10.1112/plms/s3-14.2.299
[6] B. E. JOHNSON, Centralizers on certain topological algebras, J. London Math. Soc, 39(1964), 603-614. · Zbl 0124.06902 · doi:10.1112/jlms/s1-39.1.603
[7] L. MATE, The Arens product and multiplier operators, Studia Math., 28(1967), 227-234 · Zbl 0158.14103 · eudml:217194
[8] C. K. RICKART, General Theory of Banach Algebras, Van Nostrand, 1960 · Zbl 0095.09702
[9] W. RUDIN, Fourier Analysis on Groups, Interscience, 1962 · Zbl 0107.09603
[10] B. J. TOMIUK AND P. K. WONG, The Arens product and duality in ¬£ *-algebras, Proc Amer. Math. Soc, 25(1970), 529-534. 452H. -C. LAI · Zbl 0198.17902 · doi:10.2307/2036637
[11] P. K. WONG, The Arens product and duality in i?*-algebras, Proc. Amer. Math. Soc, 27(1971), 535-538. · Zbl 0209.44404 · doi:10.2307/2036493
[12] P. K. WONG, On the Arens product and annihilator algebras, Proc. Amer. Math. Soc, 30(1971), 79-83. JSTOR: · Zbl 0218.46059 · doi:10.2307/2038226 · http://links.jstor.org/sici?sici=0002-9939%28197109%2930%3A1%3C79%3AOTAPAA%3E2.0.CO%3B2-E&origin=euclid