×

zbMATH — the first resource for mathematics

Diffeomorphisms obtained from endomorphisms. (English) Zbl 0293.57016

MSC:
57R50 Differential topological aspects of diffeomorphisms
57R45 Singularities of differentiable mappings in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Louis Block, Morse-Smale endomorphisms of the circle, Proc. Amer. Math. Soc. 48 (1975), 457 – 463. · Zbl 0276.58011
[2] Louis Block and John Franke, A classification of the structurally stable contracting endomorphisms of \?\textonesuperior , Proc. Amer. Math. Soc. 36 (1972), 597 – 602. · Zbl 0263.58010
[3] Louis Block and John Franke, Existence of periodic points for maps of \?\textonesuperior , Invent. Math. 22 (1973/74), 69 – 73. · Zbl 0272.58005
[4] John Guckenheimer, Endomorphisms of the Riemann sphere, Global Analysis (Proc. Sympos. Pure Math. Vol, XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 95 – 123.
[5] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133 – 163.
[6] M. V. Jakobson, Smooth mappings of the circle into itself, Mat. Sb. (N.S.) 85 (127) (1971), 163 – 188 (Russian).
[7] John Milnor, Lectures on the \?-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. · Zbl 0161.20302
[8] Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175 – 199. · Zbl 0201.56305
[9] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202
[10] S. Smale, The \Omega -stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, r.I., 1970, pp. 289 – 297.
[11] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473 – 487. · Zbl 0159.53702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.