Extrapolation of S. O. R. iterations. (English) Zbl 0293.65020


65F10 Iterative numerical methods for linear systems
65J05 General theory of numerical analysis in abstract spaces
65B05 Extrapolation to the limit, deferred corrections
Full Text: EuDML


[1] A. S. Householder: The Theory of Matrices in Numerical Analysis. Blaisdell Publishing Company 1965.
[2] D. K. Faddějev, V. N. Faddějevová: Numerical Methods in Linear Algebra. (Numerické metody lineární algebry). SNTL, Praha 1964.
[3] A. Ralston: A First Course in Numerical Analysis. McGraw-Hill Book Company, 1965. · Zbl 0139.31603
[4] R. S. Varga: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey 1962. · Zbl 0133.08602
[5] G. J. Tee: Eigenvectors of the Successive Overrelaxation Process and its Combination with Chebyshev Semi-Iteration. The Computer Journal, Vol. 6, No 3, October 1963, str. 250-263. · Zbl 0131.14106
[6] D. M. Young: Iterative Method for Solving Partial Difference Equation of Elliptic Type. Trans. Amer. Math. Soc. 76, 1954, 92-111. · Zbl 0055.35704
[7] E. Humhal J. Zítko: Contribution to the S.O.R. Method. (Poznámka k superrelaxační metodě). Aplikace matematiky 3, sv. 12, 1967, 161 - 170. · Zbl 0158.34202
[8] Л. А. Люстерник: Замечания к численному решению краевых задач уравнения Лапласа и вычислениям собственных значений методом сеток. Тр. Матем. института АН СССР, 1947, 20, 49-64. · Zbl 1153.11318
[9] I. Marek: On Ljusternik’s Method of Improving Convergence of Nonlinear Iterative Sequences. CMUC 6, 3, 1965, 371-380. · Zbl 0195.43003
[10] N. Mapek: Об одном методе ускорения сходимости итерационных процесов. ЖВМиМФ, Том 2, Но 6, 1962, 963-971. · Zbl 1005.68507
[11] C. G. Broyden: Some Generalizations of the Theory of Successive Over-Relaxation. Numer. Math. 6, Heft 4, 1964, 269-284. · Zbl 0244.65021
[12] L. A. Hageman R. B. Kellogg: Estimating Optimum Overrelaxation Parameter. Math. of Comp., January 1968, Vol. 22, No 101, 60-68. · Zbl 0165.50301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.