×

zbMATH — the first resource for mathematics

Extension of tabled OL-systems and languages. (English) Zbl 0293.68065

MSC:
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Baker and G. T. Herman, ?Simulation of organisms using a developmental model, Parts I and II,?Int. J. Bio-Med. Comp., to appear.
[2] E. F. Codd,Cellular Automata (Academic Press, New York, 1968).
[3] D. van Dalen, ?A note on some systems of Lindenmayer,?Math. Systems Theory 5:128?140 (1971). · Zbl 0218.02031 · doi:10.1007/BF01702868
[4] P. Doucet, ?On the membership question in some Lindenmayer systems,?Indag. Math. 34:45?52 (1972). · Zbl 0242.68051 · doi:10.1016/1385-7258(72)90027-3
[5] H. Feliciangeli and G. T. Herman, ?Algorithms for producing grammars from sample derivations,?J. Comp. Syst. Sci., to appear. · Zbl 0252.68041
[6] S. Ginsburg,The Mathematical Theory of Context-Free Languages (McGraw-Hill, New York, 1966). · Zbl 0184.28401
[7] S. Ginsburg and S. Greibach, ?Abstract families of languages,?Mem. Am. Math. Soc. 87:1?32 (1969). · Zbl 0194.31402
[8] G. T. Herman, ?The computing ability of a developmental model for filamentous organisms,?J. Theoret. Biol. 25:421?435 (1969). · doi:10.1016/S0022-5193(69)80030-5
[9] G. T. Herman, ?The role of environment in developmental models,?J. Theoret. Biol. 29:329?341 (1970. · doi:10.1016/0022-5193(70)90102-5
[10] G. T. Herman, ?Models for cellular interactions in development without polarity of individual cells, Parts I and II.?Int. J. Systems Sci. 2:271?289 (1971):3:149?175 (1972). · Zbl 0224.92007 · doi:10.1080/00207727108920195
[11] G. T. Herman, ?Closure properties of families of languages associated with biological systems,? submitted to a technical journal, abstract inProc. 5th Annual Princeton Conf. Inf. Sciences Syst., 1971.
[12] G. T. Herman, ?Polar organisms with apolar individual cells,? inProc. Int. Congr. on Logic, Math, and Phil, of Science, 1971.
[13] G. T. Herman, ?The syntactic inference problem as applied to biological systems,? to appear inMachine Intelligence 7. · Zbl 0266.68031
[14] G. T. Herman, ?A biologically motivated extension of Algol-like languages,? to appear inInformation and Control.
[15] G. T. Herman, K. P. Lee, J. van Leeuwen, and G. Rozenberg, ?Characterization of unary developmental languages,? to appear inDiscrete Mathematics. · Zbl 0279.68062
[16] G. T. Herman, A. Lindenmayer, and G. Rozenberg, ?Description of developmental systems using recurrence systems,? submitted to a technical journal. · Zbl 0313.68068
[17] J. E. Hopcroft and J. D. Ullman,Formal Languages and Their Relation to Automata (Addison-Wesley, Reading, Mass., 1969). · Zbl 0196.01701
[18] A. Lindenmayer, ?Mathematical models for cellular interactions in development, Parts I and II,?J. Theoret. Biol. 18:280?315 (1968). · doi:10.1016/0022-5193(68)90079-9
[19] A. Lindenmayer, ?Developmental systems without cellular interactions, their languages and grammars,?J. Theoret. Biol. 30:455?484 (1971). · doi:10.1016/0022-5193(71)90002-6
[20] A. Lindenmayer, ?Cellular automata, formal languages and developmental systems,? inProc. Int. Congr. on Logic, Math, and Phil, of Science, 1971.
[21] A. Lindenmayer and G. Rozenberg, ?Developmental systems and languages,? inProc. 4th ACM Symp. Theory Comp. (1972), pp. 214?221.
[22] A. Paz and A. Salomaa, ?Integral sequential word functions and growth equivalence of Lindenmayer systems,? submitted to a technical journal. · Zbl 0273.68056
[23] D. J. Rosenkrantz, ?Programmed grammars and classes of formal languages,?J. Assoc. Comp. Mach. 16:107?131 (1969). · Zbl 0182.02004 · doi:10.1145/321495.321504
[24] G. Rozenberg, ?TOL systems and languages,? to appear inInformation and Control.
[25] G. Rozenberg, ?OnQL languages with restricted use of productions,? to appear inJ. Comp. Syst. Sci.
[26] G. Rozenberg, ?The equivalence problem for deterministic TOL-systems is undecidable,?Inf. Processing Letters,1:201?204 (1972). · Zbl 0267.68033 · doi:10.1016/0020-0190(72)90039-7
[27] G. Rozenberg, ?Z-systems with interactions,? to appear inJ. Comp. Syst. Sci.
[28] G. Rozenberg, ?DOL sequences,? submitted to a technical journal.
[29] G. Rozenberg, ?Circularities inDOL sequences,? to appear inRevue Raum, de Math. Pures et Appl.
[30] G. Rozenberg, ?Direct proofs of the unsolvability of the equivalence problem for sentential forms of context-free grammars and the equivalence problem forQL systems,? to appear inInf. Processing Letters.
[31] G. Rozenberg, ?On a machine model forL-systems without interactions,? submitted to a technical journal.
[32] G. Rozenberg and P. Doucet, ?On OL languages,?Information and Control 19:302?318 (1971). · Zbl 0242.68052 · doi:10.1016/S0019-9958(71)90164-1
[33] G. Rozenberg and K. P. Lee, ?Some properties of the class ofL-languages with interactions,? submitted to a technical journal.
[34] G. Rozenberg and K. P. Lee, ?Developmental systems with finite axiom sets, Parts I and II,? submitted to a technical journal.
[35] G. Rozenberg and A. Lindenmayer, ?Developmental systems with locally catenative formulas,? submitted to a technical journal. · Zbl 0304.68076
[36] V. Surapipith and A. Lindenmayer, ?Thioquanine-dependent light sensitivity of Perithecial initiation in Sordia flmicola,?J. Gen. Microb. 57:227?237 (1969). · doi:10.1099/00221287-57-2-227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.