×

zbMATH — the first resource for mathematics

Equisingular deformations of plane algebroid curves. (English) Zbl 0294.14007

MSC:
14D15 Formal methods and deformations in algebraic geometry
14B10 Infinitesimal methods in algebraic geometry
32Sxx Complex singularities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] EGA A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Paris 4, 8, 11, 17, 20, 24, 28, 32 (1960-67). MR 29 #1210; 30 #3885; 33 #7330; 36 #177a, b, c; 36 #178; 39 #220.
[2] -, Séminaire de géométrie algébrique, mimeographed notes, Inst. Hautes Etudes Sci. Paris, 1960-61.
[3] Heisuke Hironaka, On the equivalence of singularities. I, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 153 – 200.
[4] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967), 41 – 70. · Zbl 0156.27201
[5] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[6] David Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. · Zbl 0187.42701
[7] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208 – 222. · Zbl 0167.49503
[8] M. Schlessinger, Infinitesimal deformations of singularities, Thesis, Harvard, 1964.
[9] Jonathan M. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529 – 577. · Zbl 0299.14008 · doi:10.2307/2373706 · doi.org
[10] -, Deformations of branched covers and equisingularity, Thesis, Harvard, 1971.
[11] Oscar Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507 – 536. · Zbl 0132.41601 · doi:10.2307/2373019 · doi.org
[12] Oscar Zariski, Studies in equisingularity. II. Equisingularity in codimension 1 (and characteristic zero), Amer. J. Math. 87 (1965), 972 – 1006. · Zbl 0146.42502 · doi:10.2307/2373257 · doi.org
[13] Oscar Zariski, Studies in equisingularity. III. Saturation of local rings and equisingularity, Amer. J. Math. 90 (1968), 961 – 1023. · Zbl 0189.21405 · doi:10.2307/2373492 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.