Pukanszky, L. The primitive ideal space of solvable Lie groups. (English) Zbl 0294.22009 Invent. Math. 22, 75-118 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 18 Documents MSC: 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods 22E25 Nilpotent and solvable Lie groups 22D10 Unitary representations of locally compact groups 22D35 Duality theorems for locally compact groups 22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations 46K05 General theory of topological algebras with involution 46K99 Topological (rings and) algebras with an involution PDF BibTeX XML Cite \textit{L. Pukanszky}, Invent. Math. 22, 75--118 (1973; Zbl 0294.22009) Full Text: DOI EuDML References: [1] Auslander, L., Kostant, B.: Polarization and unitary representations of solvable groups. Inventiones math.14, 255-354 (1971) · Zbl 0233.22005 [2] Auslander, L., Moore, C.C.: Unitary representations of solvable Lie groups. Memoirs of the American Mathematical Society62 (1966) · Zbl 0204.14202 [3] Blattner, R.J.: Positive definite measures. Proc. Am. Math. Soc.14, 423-428 (1963) · Zbl 0135.36202 [4] Dixmier, J.: Sur les représentations unitaires des groupes de Lie nilpotents. Am. J. Math.83, 160-170 (1959) · Zbl 0121.33604 [5] Dixmier, J.: Sur lesC * algèbres. Bull. Soc. Math. France,88, 95-112 (1960) · Zbl 0124.32403 [6] Dixmier, J.: LesC * algèbres and leurs représentations. Paris: Gauthier-Villars 1964 [7] Dixmier, J.: Sur la représentation régulière d’un groupe localement compact connexe. Ann. Sci. Éc. Norm. Sup.2, 423-436 (1969) · Zbl 0186.46304 [8] Effross, E.G.: A decomposition theory for representations ofC * algebras. Trans. Am. Math. Soc.197, 83-106 (1963) [9] Effross, E. G., Hahn, F.: Locally compact transformation groups andC * algebras. Memoirs of the American Mathematical Society75 (1967) [10] Fell, J. M. G.: The dual spaces ofC * algebras. Trans. Am. Math. Soc.94, 365-403 (1960) · Zbl 0090.32803 [11] Fell, J. M. G.: Weak containment and induced representations of groups. Can. J. Math.14, 237-268 (1962) · Zbl 0138.07301 [12] Fell, J. M. G.: Weak containment and Kronecker products of group representations. Pacific J. Math.13, 503-510 (1963) · Zbl 0123.10102 [13] Glimm, J.: Locally compact transformation groups. Trans. Am. Math. Soc.101, 124-138 (1961) · Zbl 0119.10802 [14] Gootman, E. C.: Primitive ideals ofC * algebras associated with transformation groups. Trans. Am. Math. Soc.170, 97-108 (1972) · Zbl 0246.43005 [15] Greenleaf, F. P.: Invariant means of locally compact groups and their applications. New York: Van Nostrand 1969 · Zbl 0174.19001 [16] Kirillov, A. A.: Unitary representations of nilpotent Lie groups (russian). Usp. Mat. Nauk17, 57-110 (1962) · Zbl 0106.25001 [17] Mackey, G. W.: Induced representations of locally compact groups I, Ann. Math.55, 101-139 (1952) · Zbl 0046.11601 [18] Mackey, G. W.: Induced representations of locally compact groups II, Ann. Math.58, 193-221 (1953) · Zbl 0051.01901 [19] Mackey, G. W.: Unitary representations of group extensions I. Acta Math.99, 265-311 (1958) · Zbl 0082.11301 [20] Pukanszky, L.: On the characters and Plancherel formula of nilpotent groups. J. Funct. Anal.,1, 255-280 (1967) · Zbl 0165.48603 [21] Pukanszky, L.: On the unitary representations of exponential groups. J. Funct. Anal.2, 73-113 (1968) · Zbl 0172.18502 [22] Pukanszky, L.: Unitary representations of solvable Lie groups. Ann. Sci. Ec. Norm. Sup.4, 457-608 (1971) · Zbl 0238.22010 [23] Représentations des groupes de Lie résolubles. Paris: Dunod 1972 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.