Saxon, Stephen A. Two characterizations of linear Baire spaces. (English) Zbl 0294.46003 Proc. Am. Math. Soc. 45, 204-208 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents MSC: 46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. Grothendieck, Espaces vectoriels topologiques, Instituto de Matemática Pura e Aplicada, Universidade de São Paulo, São Paulo, 1954 (French). · Zbl 0058.33401 [2] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. [3] V. Klee and A. Wilansky, Research problems, #13, Bull. Amer. Math. Soc. 28 (1966), p. 151. [4] Stephen Saxon and Mark Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29 (1971), 91 – 96. · Zbl 0212.14105 [5] S. Saxon, (LF)-spaces, quasi-Baire spaces, and the strongest locally convex topology (to appear). · Zbl 0243.46011 [6] Stephen A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87 – 106. · Zbl 0243.46011 · doi:10.1007/BF01419586 [7] Aaron R. Todd and Stephen A. Saxon, A property of locally convex Baire spaces, Math. Ann. 206 (1973), 23 – 34. · Zbl 0247.46002 · doi:10.1007/BF01431526 [8] Albert Wilansky, Functional analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. · Zbl 0229.54001 [9] Albert Wilansky, Topics in functional analysis, Notes by W. D. Laverell. Lecture Notes in Mathematics, No. 45, Springer-Verlag, Berlin-New York, 1967. · Zbl 0156.36103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.