×

zbMATH — the first resource for mathematics

Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen. (German) Zbl 0294.47013

MSC:
47A60 Functional calculus for linear operators
47B40 Spectral operators, decomposable operators, well-bounded operators, etc.
47A15 Invariant subspaces of linear operators
47A10 Spectrum, resolvent
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] ALBRECHT, E.: Funktionalkalküle in mehreren Veränderlichen. Dissertation, Mainz 1972.
[2] ———-: An example of a non-regular generalized scalar operator. Rev. Roum. Math. Pures Appl.18, 983–985 (1973). · Zbl 0265.47012
[3] —–: An example of a -decomposable operator which is not -spectral. Erscheint in Rev. Roum. Math. Pures Appl.
[4] ALBRECHT, E. and F.-H. VASILESCU: Non-analytic local spectral properties in several variables. Erscheint noch.
[5] ANDERSON, R.F.V.: The Weyl functional calculus. J. Functional Analysis4, 240–267 (1969). · Zbl 0191.13403
[6] APOSTOL, C.: Spectral decompositions and functional calculus. Rev. Roum. Math. Pures Appl.13, 1481–1528 (1968). · Zbl 0176.43701
[7] BOURBAKI, N.: Théories spectrales. Éléments de mathématique, Fasc. 32, Paris: Hermann et Cie. 1967.
[8] COLOJOARĂ, I. and C. FOIAŞ: Theory of generalized spectral operators. New York-London-Paris: Gordon and Breach 1968.
[9] DUNFORD, N. and J.T. SCHWARTZ: Linear operators, Part III: Spectral operators. New York-London-Sydney-Toronto: Wiley-Interscience 1971. · Zbl 0243.47001
[10] FOIAŞ, C.: Une application des distributions vectorielles à la theorie spectrale. Bull. Sci. Math. (2)84, 147–158 (1960). · Zbl 0095.09905
[11] ———-: Spectral capacities and decomposable operators. Rev. Roum. Math. Pures Appl.13, 1539–1545 (1968). · Zbl 0176.43801
[12] FRUNZĂ, St.: Théorie spectrale locale en plusieurs variables. C. R. Acad. Sc. Paris, Série A,277, 785–787 (1973). · Zbl 0264.47038
[13] GROTHENDIECK, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. AMS 16, reprint 1966.
[14] HARTE, R.E.: Spectral mapping theorems. Proc. Royal Irish Acad.72, Sect. A, 89–107 (1972). · Zbl 0206.13301
[15] KANTOROVITZ, S.: Classification of operators by means of their operational calculus. Trans. AMS115, 194–224 (1965). · Zbl 0127.07801
[16] KOMURA, T.: Semigroups of operators in locally convex spaces. J. Functional Analysis2, 258–296 (1968). · Zbl 0172.40701
[17] MAEDA, F.-Y.: Generalized spectral operators on locally convex spaces. Pacific J. Math.13, 177–192 (1963). · Zbl 0137.32003
[18] MEISE, R.: Darstellung temperierter vektorwertiger Distributionen durch holomorphe Funktionen II. Math. Ann.198, 161–178 (1972). · Zbl 0228.46033
[19] TAYLOR, J.L.: A joint spectrum for several commuting operators. J. Functional Analysis6, 172–191 (1970). · Zbl 0233.47024
[20] ———-: The analytic-functional calculus for several commuting operators. Acta Math.125, 1–38 (1970). · Zbl 0233.47025
[21] TILLMANN, H.G.: Darstellung vektorwertiger Distributionen durch holomorphe Funktionen. Math. Ann.151, 286–295 (1963). · Zbl 0117.08901
[22] ———-: Eine Erweiterung des Funktionalkalküls für lineare Operatoren. Math. Ann.151 424–430 (1963). · Zbl 0121.33404
[23] TREVES, F.: Topological vector spaces, distributions and kernels. New York-London: Academic Press 1967.
[24] VASILESCU, F.-H.: Residually decomposable operators in Banach spaces. Tôhoku Math. J.21, 509–522 (1969). · Zbl 0193.10001
[25] ———-: Residual properties for closed operators on Fréchet spaces. Illinois J. Math.15, 377–386 (1971). · Zbl 0213.14306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.