zbMATH — the first resource for mathematics

Markovian master equations. (English) Zbl 0294.60080

60K35 Interacting random processes; statistical mechanics type models; percolation theory
34K25 Asymptotic theory of functional-differential equations
45J05 Integro-ordinary differential equations
34G99 Differential equations in abstract spaces
Full Text: DOI
[1] Prigogine, I.: The statistical interpretation of nonequilibrium entropy. In: Thirring, W., Cohen, E. G. D. (Eds.): The Boltzmann equation, theory and applications. Berlin-Heidelberg-New York: Springer 1973
[2] Haake, F.: Statistical treatment of open systems by generalised master equations. Springer tracts in modern physics, Vol.66. Berlin-Heidelberg-New York: Springer 1973
[3] Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0148.12601
[4] Davies, E. B.: Commun. math. Phys.33, 171–186 (1973)
[5] Sewell, G. L.: Relaxation, amplification and the K.M.S. conditions (to appear)
[6] Davies, E. B.: Dynamics of a multi-level Wigner-Weisskopf atom. J. math. Phys. (To appear)
[7] Papanicolaou, G. C., Varadhan, S. R. S.: Comm. Pure. Appl. Math.26, 497–524 (1973) · Zbl 0262.60046
[8] Bongaarts, P. J. M., Fannes, M., Verbeure, A.: A remark on ergodicity, dissipativity, return to equilibrium, (To appear)
[9] Pulè, J. V.: The Bloch equation. Commun. Math. Phys. (To appear) (1974)
[10] Balslev, E., Verbeure, A.: Commun. math. Phys.7, 55–76 (1968) · Zbl 0155.32305
[11] Presutti, E., Scacciatelli, E., Sewell, G. L., Wanderlingh, F.: J. Math. Phys.13, 1085–1098 (1972)
[12] Chernoff, P. R.: J. Funct. Anal.2 (1968) 238–242 · Zbl 0157.21501
[13] Davies, E. B.: Commun. math. Phys.19, 83–105 (1970) · Zbl 0199.28202
[14] Davies, E. B.: Z. Wahrscheinlichkeitsch.23, 261–273 (1972) · Zbl 0231.20023
[15] Hepp, K., Lieb, E. H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta46, 573–603 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.