×

zbMATH — the first resource for mathematics

Nrsted decomposition for dynamic models. (English) Zbl 0294.90051

MSC:
90C05 Linear programming
91B60 Trade models
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963). · Zbl 0108.33103
[2] G.B. Dantzig, T. Magnanti and S. Maier, ”A user’s guide to MPL/T.1”, Paper No. 76, Graduate School of Business Administration, Duke University, Durham, N.C. (December 1972).
[3] G.B. Dantzig and P. Wolfe, ”The decomposition algorithm for linear programs”,Econometrica 29 (1961) 767–778. · Zbl 0104.14305 · doi:10.2307/1911818
[4] C.R. Glassey, ”Nested decomposition and multi-stage linear programs”,Management Science 20 (1973) 282–292. · Zbl 0313.90037 · doi:10.1287/mnsc.20.3.282
[5] C.R. Glassey, ”Dynamic linear programs for production scheduling”,Journal of the Operations Research Society of America 19 (1971) 45–56. · Zbl 0216.26702
[6] H. Halkin, ”A maximum principle of the Pontryagin type for systems described by nonlinear difference equations”,SIAM Journal on Control 4 (1966) 90–111. · Zbl 0152.09301 · doi:10.1137/0304009
[7] A.S. Manne, ”Sufficient conditions for optimality in an infinite horizon development plan”,Econometrica 38 (1970) 18–38. · doi:10.2307/1909238
[8] M. Simmonard,Linear programming (Prentice-Hall, Englewood Cliffs, N.J., 1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.